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Abstract Parallel Memetic Algorithms (PMAs) are a class of modern parallel meta-heuristics 

that combine evolutionary algorithms, local search, parallel and distributed computing technologies for 

global optimization. Recent studies on PMAs for large-scale complex combinatorial optimization 

problems have shown that they converge to high quality solutions significantly faster than canonical 

GAs and MAs. However, the use of local learning for every individual throughout the PMA search can 

be a very computationally intensive and inefficient process. This paper presents a study on two 

diversity-adaptive strategies, i.e., 1) diversity-based static adaptive strategy (PMA-SLS) and 2) 

diversity-based dynamic adaptive strategy (PMA-DLS) for controlling the local search frequency in the 

PMA search. Empirical study on a class of NP-hard combinatorial optimization problem, particularly 

large-scale quadratic assignment problems (QAPs) shows that the diversity-adaptive PMA converges to 

competitive solutions at significantly lower computational cost when compared to the canonical MA 

and PMA. Furthermore, it is found that the diversity-based dynamic adaptation strategy displays better 

robustness in terms of solution quality across the class of QAP problems considered. Static adaptation 

strategy on the other hand requires extra effort in selecting suitable parameters to suit the problems in 

hand. 

Keywords: island model parallel memetic algorithm; adaptive local search frequency; 

quadratic assignment problem 
 

1 Introduction 

Genetic algorithms (GAs), first proposed by Holland in 1975 [11], are meta-heuristic 

methods that have been successfully used for solving large-scale optimization 

problems. Their popularity lies in the ease of implementation and their ability to 

converge close to the global optimum. Nevertheless, canonical GAs generally suffers 
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from excessively slow convergence to locate a precise enough solution because of 

their failure to exploit local information. This often limits the practicality of GAs on 

many large-scale real world problems where computational time is a crucial 

consideration. Hence, it is now well established that canonical GAs are not suited for 

fine-tuning in complex search spaces, and that hybridization with other local learning 

improvement techniques can greatly improve the efficiency of search [9].  

One of the recent growing areas in evolutionary algorithm (EAs) research is 

memetic algorithms (MAs) [21]. MAs are population-based meta-heuristic search 

methods inspired by Darwinian’s principles of natural evolution and Dawkins’ notion 

of a meme defined as a unit of cultural evolution that is capable of local refinements 

[5]. Hence, a memetic model of adaptation exhibits the plasticity of individuals that a 

strictly genetic model fails to capture. Recent studies on MAs have revealed their 

successes on a wide variety of optimization problems [1, 10, 12, 15, 16, 17, 22, 25, 

33]. They not only converge to high quality solutions, but also search more efficiently 

than their conventional counterparts. Some theoretical and empirical investigations on 

MAs can be found in [9, 10, 15, 17, 22, 25]. In a more diverse context, MAs are also 

commonly known as hybrid EAs, Baldwinian EAs, Lamarkian EAs, cultural 

algorithms and genetic local search.  

With evolutionary algorithms (EAs), there is flexibility to partition the 

population of individuals or islands of EA subpopulations among multiple compute 

nodes. It is important that the intrinsic parallelism of EAs is retained when designing 

any MAs. Best of all, parallel EAs possess diversity preservation capabilities that 

alleviate the effect of premature convergences. In our recent work, some extensions of 

MAs to parallel MAs (PMAs) have been proposed [34, 35]. It is worth noting that a 

crucial aspect of MAs or PMAs is to strike an optimum balance between the level of 

exploration provided by the GA, against the level of exploitation posed by the local 

search procedure throughout the memetic search. However, in canonical MAs or 

PMAs, it is common practice for the local search procedure to be applied on every 

individual/chromosome in the GA population(s). This is a very computationally 

intensive and inefficient search process. At the same time, exhaustive local search 

may lead to ineffective search due to premature fall in diversity during the PMA 

search. 

To control the local search frequency during a PMA search, we focus on two 

diversity-adaptive strategies, i.e., PMA-SLS and PMA-DLS.  In contrast to canonical 
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MAs and PMAs, the diversity-based adaptive approaches control the number of 

individuals undergoing the local search procedure throughout the PMA evolutionary 

search process. PMA-SLS uses a static adaptation strategy, maintaining population 

diversity throughout the PMA search by using a pre-defined Gaussian distribution to 

adjust the local search frequency. PMA-DLS’s adaptation is based on online 

monitoring of population diversity during the PMA search for controlling the local 

search frequency. Empirical studies on the two diversity-adaptive PMAs are 

conducted for a class of NP-hard combinatorial optimization problem, particularly on 

large-scale quadratic assignment problems (QAPs). Results obtained show that both 

PMA-SLS and PMA-DLS converge to competitive solutions at significantly lower 

computational cost compared to canonical MA and PMA. Furthermore, the diversity-

based dynamic adaptation strategy is shown to display better robustness in terms of 

solution quality on the class of QAP problems considered. Static adaptation strategy 

on the other hand is parameters sensitive. Therefore, suitable parameters should be 

chosen to suit the problems in hand. 

This paper is organized as follows. Section 2 provides a brief overview of the 

recent research activities on memetic algorithm. The proposed static and dynamic 

diversity-adaptive approaches for controlling the local search frequency in the island 

model parallel memetic algorithm are described in Section 3. Section 4 presents the 

numerical results obtained from empirical study and provides a comprehensive 

quantitative/statistical comparison of PMA-DLS, PMA-SLS and PMA in the context 

of large scale QAPs. The search performances of the various algorithms in terms of 

solution quality, computational time, and solution precision are also reported in the 

section. Finally, we conclude the paper in Section 5.  

2 Overview on Adaptive Memetic Algorithms 

Memetic algorithm may be regarded as a marriage between a population-based global 

search and the local improvement made by each of the individuals. This has the 

potential to exploit the complementary advantages of EAs (generality, robustness, 

global search efficiency), and problem-specific local search (exploiting application-

specific problem structure, rapid convergence toward local minima). In recent years, a 

number of independent researchers have addressed several issues relating to the trade-
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off between exploration and exploitation in MAs. Some of the typical issues 

considered in literature are as follow: 

1) How often should local learning be applied for, i.e., local search frequency? 

2) On which solutions should the local learning be applied? 

3) How long should the local learning be run, i.e., local search intensity? 

4) Which local learning procedure or local search or meme to use? 

The first issue pertinent to memetic algorithm design is to consider how often 

the local search should be applied for, i.e., local search frequency. Hart [10] 

investigated the effect of local search frequency on MA search performance. He 

studied various configurations of the local search frequency at different stages of the 

MA search. Conversely, it was shown in Ku et al. [16] that it may be worthwhile to 

apply local search on every individual if the computational complexity of the local 

search is relatively low. Hart [10] also studied the issue on how to best select the 

individuals among the EA population that should undergo local search. In his work, 

fitness-based and distribution-based strategies were studied for adapting the 

probability of applying local search on the population of chromosomes in continuous 

parametric search problems. Land [17] extended his work to combinatorial 

optimization problems and introduced the concept of “sniff” for balancing genetic and 

local search, also known as the local/global ratio. In [9], Goldberg and Voessner 

provide a theoretical alternative for efficient global-local hybrid search and 

characterize the optimum local search time that maximizes the probability of 

achieving a solution of a specified accuracy. Recently, Bambha et al. [1] introduced a 

simulated heating technique for systematically integrating parameterized local search 

into evolutionary algorithms to achieve maximum solution quality under a fixed 

computational time budget.  

It is worth noting that the performance of MA search is also greatly affected 

by the choice of neighborhood structures. Fitness landscape analysis [22] provided a 

way for identifying the structure of a given problem and thus a selection of local 

search algorithms. Krasnogor [15] investigated how to change the size and the type of 

neighbourhood structures dynamically in the framework of multi-meme memetic 

algorithms where each meme had a different neighbourhood structure, a different 

acceptance rule and different local search intensity. The choice of multiple local 

learning procedure or memes during a memetic algorithm search in the spirit of 

Lamarckian learning, otherwise, known as meta-Lamarckian learning, on continuous 

 4



optimization problems was also considered in Ong et al. [25]. For a detailed taxonomy 

and comparative study on adaptive choice of memes in memetic algorithms, the 

reader may refer to [26].  

In the context of multi-objective MA, issues relating to the frequency and 

intensity of local search have also been studied. The importance of striking a balance 

between genetic and local search in the multi-objective optimization was emphasized 

in Ishibuchi et al. [12]. Tan et al. [33] also incorporated the concept of fuzzy boundary 

local perturbation (FBLP) with interactive local fine tuning to facilitate broader 

neighborhood exploration in the context of multi-objective optimization. An excellent 

exposition on the design on multi-objective MAs can be found in [13].  

A variety of parallel memetic algorithm (PMA) models which are extensions 

of canonical PGA have also been studied recently. These include the blackboard 

parallel asynchronous memetic algorithm [2], master/slave PMA [6] and the island 

model PMA [4]. The issue on which individuals should local learning be applied was 

also recently considered in the context of island model parallel memetic algorithm [4]. 

From literature survey, there has not been much work that considered balancing 

global and local search in the context of parallel MA. In particular, there is very little 

focus in literature on how local search frequency affects the diversity level of PMAs. 

We will first show that excessive local search in island model PMA can be counter-

productive in the sections that follow. To address this issue, we proposed diversity-

adaptive strategies for controlling the local search frequency in island model parallel 

memetic algorithms.  

3 Diversity-Adaptive Parallel Memetic Algorithms 

In this section, we begin with a brief overview on the diverse forms of parallel 

evolutionary algorithms in literature. Parallel evolutionary algorithm (PEA) represents 

an extension of the canonical EA. The basic concept of PEA is based on principle of 

tasks division of a classical EA across multiple processing nodes. The other advantage 

of PEA is that it facilitates speciation, a process by which different subpopulations 

evolve in diverse directions simultaneously. They have been shown to speed up the 

search process, attaining higher quality solutions on complex design problems. 

Several types of PEAs are briefly discussed. Subsequently, the PMA, PMA-SLS and 
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PMA-DLS for solving combinatorial optimization are introduced and described in this 

section. 

3.1 Parallel Evolutionary Algorithm 

Master-slave PEA  In master-slave PEAs, it is assumed that there is only a single 

panmictic population, i.e., a canonical EA. Like the canonical EA, each individual 

competes and reproduces with others. However, unlike the canonical EA, evaluations 

of individuals are distributed by scheduling fractions of the population among the 

processing slave nodes. In addition, master-slave PEA uses parallel computing to 

speed up the operation of the simple EA without changing the basic operations of the 

sequential EA. Such a model has the advantage of easy implementation since it does 

not alter the protocol of canonical EA search, i.e., the existing theory of simple EA 

still applies. Furthermore, it serves as an efficient method of parallelization when the 

fitness evaluation is computationally expensive.  

Fine-grained PEA  Fine-grained parallel EA consists of a single population pool, 

which is spatially structured. It is designed to run on closely-link massively parallel 

processing system, i.e., a computing system consisting of large number of processing 

elements and connected in a specific high-speed topology. For instance, the 

population of individuals in a fine-grained PEA may be organized as a two-

dimensional grid, since many massively parallel computers have processing elements 

that are connected using this topology. Consequently, selection and mating in a fine-

grained parallel EA are restricted to small groups. Nevertheless, groups overlap to 

permit some interactions among all the individuals so that good solutions may 

disseminate across the entire populations. Sometimes, fine-grained parallel EA is also 

termed as the cellular model.  

Multi-population PEA  Multiple population (or deme) EA may be more 

sophisticated, as it consists of several subpopulations that exchange individuals 

occasionally. This exchange of individuals is called migration and it is controlled by 

several parameters. Multi-population EAs are characterized by the use of multiple 

subpopulations and migration operation. Multi-population PEAs are also known by 

various names. Since they resemble the “island model” in population genetics that 

considers relatively isolated demes, it is often known as “Island EA”.  
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Hierarchical PEA  Various PEA models may also be hybridized to produce other 

new hierarchical PEA (HPEA) models. One may form a hierarchical PEA that 

combines a multi-population PEA (at the upper level) and a fine-grained PEA or 

master-slave PEA (at the lower level). On the other hand, multi-population PEA may 

also be designed with multiple levels in a manner such that migration rate is faster at 

the lower level and possessing a communication topology which is much denser than 

the upper level. In general, hierarchical PEA is considered to be more effective in 

generating significant speed up than standalone PEA models. 

3.2 Canonical Island Model Parallel Memetic Algorithm (PMA) 

We focus on island model parallel memetic algorithm for solving large-scale 

combinatorial optimization problems. The pseudo-code of a canonical PMA is 

outlined in Fig. 3-1.  

 

BEGIN 
Initialize M subpopulations of size N each 
WHILE (termination condition not met) 
 FOR each subpopulation or island 

Evaluate all individuals in the subpopulation 
           For each individual in the subpopulation 

 Apply local search to the individuals in the subpopulation. 
 Proceed with local improvement and replace the genotype in the 

subpopulation with the improved solution. 
        End For 

        Create a new population based on Selection, Mutation and Crossover. 
 END FOR 
 For every P migration interval 
                   Send K < N best individuals to a neighbouring subpopulation 
          Receive K individuals from a neighbouring subpopulation 
          Replace K individuals in the subpopulation 
 END For             
END WHILE 
END 

Fig. 3-1 Pseudo-code of the canonical island model parallel memetic algorithm 

Initially, M subpopulations are randomly generated. Individuals in the 

subpopulations will then undergo the local search learning procedure in the spirit of 

Lamarckian learning. This form of learning forces the genotype to reflect the result of 

improvement through the placement of locally improved individual back into the 

population in order to compete for reproductive opportunities. The local search 

procedure considered here is based on the k-gene exchange [19, 20, 34, 35]. 

Subsequently new subpopulations are created through selection, mutation and 

crossover. For every P migration interval, the K best performing individuals in each 
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subpopulation migrate to its neighbouring subpopulation based on the one-way ring 

topology [35]. Meanwhile, the subpopulation being considered will receive K 

individuals from a neighbouring subpopulation. The replacement scheme may be a 

random walk. Alternatively, the worst performing K individuals are replaced with the 

K migrants from its neighbour.  The entire procedure repeats until the stopping 

conditions are satisfied. 

It is generally accepted that good diversity profile over the entire evolutionary 

process is a primary advantage of using island model parallel memetic algorithm for 

solving global optimization problems. As preliminary study, we consider using the 1) 

2-island PMA and 2) 2-island PGA for solving the sko100b QAP benchmark. Note 

that PGA represents a canonical parallel GA. In contrast to PMA, no form of local 

search is used throughout the PGA search. The diversity of each subpopulation can be 

measured by various means. One simple approach is based on Shannon’s information 

entropy, which represents an overall measure for describing the state of the dynamical 

system represented by the population. This is analogous to the state of a physical or 

information system. 

Let S denotes the set of individuals that make up a subpopulation. The set S is 

further divided into partitions or subsets S1, S2,…，SQ. Each subset Sj is a grouping of 

individuals with the same fitness value. The ratio of the number of individuals in a 

partition Sj over the entire subpopulation can therefore be written as follows: 

1

j
j Q

i
i

S
p

S
=

=

∑
          (1) 

where jS is the cardinality of the set Sj. Based on partitioning of individuals 

according to the fitness values, one approach to describe the state of the dynamical 

system is based on Shannon’s information entropy E as follows [27]. 

1
log( )

Q

j j
j

E p
=

= −∑ p                                                                                                       (2) 

For illustration, the diversity of each subpopulation in the 2-island PMA and 

PGA based on the entropy measure is depicted in Fig. 3-2. From Fig. 3-2, it is worth 

highlighting that the significant drop in the entropy measure of the PMA in 

comparison to the PGA. It appears that PMA loses search diversity much earlier than 
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PGA due to possible excessive local searches. This significant drop in diversity for 

the PMA is indicative of the benefits derived from using local search in speeding up 

convergence rate of the search. However, it also implies the high risk of the PMA, 

losing out on search diversity prematurely as a result of the extensive local searches. It 

can be observed that this effect is more significant at the later stage of the search.  

Entropy measure of PMA and PGA on sko100b
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Fig. 3-2 Entropy measure for PMA and PGA on the sko100b QAP problem 

 

To minimize the risk of premature convergence in the PMA, it is reasonable to 

ask whether the effects on performance might be reduced by adapting the local search 

frequency in the PMA search. Here, we present two diversity-adaptive strategies, 1) 

diversity-based static adaptive strategy (PMA-SLS) and 2) diversity-based dynamic 

adaptive strategy (PMA-DLS) for controlling the local search frequency in the PMA 

search. The pseudo-codes of PMA-SLS and PMA-DLS are outlined in Fig. 3-3 and 

Fig. 3-4, respectively. 
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BEGIN 
Initialize M subpopulations of size N each 
WHILE (termination condition not met) 
 FOR each subpopulation or island 

Evaluate all individuals in the subpopulation 
Calculate the number of individuals undergoing local search using PMA-SLS 
strategy 
{ 

21 1( ; , , ) exp( ( ) )
22

gengen μγ μ σ η η
σπ σ
−

= − ∗
i

 

( , ; , , ) *genφ ξ μ σ η γ ξ=  
} 

           For randomly selective (.)φ individuals in the subpopulation 
 Apply local search to the selective individuals in the subpopulation. 
 Proceed with local improvement and replace the genotype in the 

subpopulation with the improved solution. 
        End For 

        Create a new population based on Selection, Mutation and Crossover. 
 END FOR 
 For every P migration interval 
                   Send K < N best individuals to a neighbouring subpopulation 
          Receive K individuals from a neighbouring subpopulation 
          Replace K individuals in the subpopulation 
 END For             
END WHILE 
END 

Fig. 3-3 Pseudo-code of PMA-SLS 

 

 10



 

BEGIN 
Initialize M subpopulations of size N each 
WHILE (termination condition not met) 
 FOR each subpopulation or island 

Evaluate all individuals in the subpopulation 
Calculate the number of individuals undergoing local search using PMA-DLS 
strategy 
{ 

( ) ( )( ) 1
( )

E gen E gen kgen
E gen k

β − −
= +

−
 

, 0
( )

( ) * ( ) , , 0
gen

gen
Min gen k gen gen

ξ
φ

φ β ξ
=⎧⎪= ⎨ ⎡ − ⎤ >⎢ ⎥⎣ ⎦⎪ ⎣ ⎦⎩

 

} 
           For randomly selective (.)φ individuals in the subpopulation 

 Apply local search to the selective individuals in the subpopulation. 
 Proceed with local improvement and replace the genotype in the 

subpopulation with the improved solution. 
        End For 

        Create a new population based on Selection, Mutation and Crossover. 
 END FOR 
 For every P migration interval 
                   Send K < N best individuals to a neighbouring subpopulation 
          Receive K individuals from a neighbouring subpopulation 
          Replace K individuals in the subpopulation 
 END For             
END WHILE 
END 

Fig. 3-4 Pseudo-code of PMA-DLS 
 

3.3 Diversity-adaptive strategy for local search frequency  

A. Diversity-based static adaptive strategy (PMA-SLS) 

In Fig. 3-2, it is noted that the population diversity degrades gradually with time. 

Since poor diversity generally occurs at the final stages of the parallel evolutionary 

search, it makes sense to consider reducing the local search frequency as the search 

progresses. In this manner, it is hoped that the high search efficiency of the canonical 

PMA at the initial stages of the search is preserved, while at the same time, greater 

explorations are enforced at the later stages of the search to reduce the risk of 

premature convergence. In particular, we model the local search frequency γ  of the 

parallel MA search process as a normal or Gaussian distribution: 

21 1( ; , , ) exp( ( ) )
22

gengen μγ μ σ η η
σπ σ
−

= −
i

∗                                                        (3) 
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where gen is the evolution generation ( ), µ and σ are the mean and standard 

deviation of the specified Gaussian distribution, respectively. η represents a scaling 

factor for the number of chromosomes local search is applied. Using the taxonomy of 

adaptive evolutionary algorithm provided in [7], the present adaptive strategy is 

termed here as diversity-based static adaptive strategy. 

0gen ≥

Using Equation (3) and a subpopulation size,ξ , the number of chromosomes 

to apply local search, (.)φ , at genth  generation is then defined as 

( , ; , , ) *genφ ξ μ σ η γ ξ=                                                                                               (4) 

where (.)φ  denotes the number of selected candidates whereby local search is applied 

at the genth  generation.  

 

B. Diversity-based dynamic adaptive strategy (PMA-DLS) 

Online entropy measure may also be used to provide dynamic information about the 

stage of the evolutionary search process and the degree of diversity of each 

subpopulation. Since population diversity represents a crucial characteristic of the 

PMA, the approach considered here makes use of online entropy measure to adapt the 

local search frequency. The method considered here is the diversity-based dynamic 

adaptive strategy or PMA-DLS in short. Hence, the dynamic local search frequency β  

in PMA-DLS can be defined based on the online entropy ratio given by 

( ) (( ) 1
( )

E gen E gen kgen
E gen k

β )− −
= +

−
                                                                                     (5) 

where  and  )(genE ( )E gen k− ( )gen k≥ are the population entropy measure at the genth 

and (gen-k)th generation, respectively.  

The PMA-DLS search thus begins by initializing all subpopulations randomly 

with ξ  chromosomes, i.e., (0)φ ξ= . Subsequently, the number of chromosomes that 

undergo local learning is defined based on online diversity of the subpopulations as 

per Equation (6).   

, 0
( )

( ) * ( ) , ,
gen

gen
Min gen k gen gen

ξ
φ

φ β ξ
=⎧⎪= ⎨ ⎡ − ⎤ >⎢ ⎥⎣ ⎦⎪ ⎣ ⎦⎩ 0

                                                       (6) 
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4 Empirical Study 

To demonstrate the capability of the proposed strategies described in the above 

section, a series of empirical studies on solving complex combinatorial optimization 

problem, in particular the quadratic assignment problem (QAP) were conducted. First, 

we briefly introduce the QAP and the experimental setup. Then, we present a series of 

empirical comparison of results for PMA-DLS, PMA-SLS, PMA and PMA-FLS on 

several large scale QAP benchmarks. PMA-FLS is a parallel memetic algorithm with 

fixed local search strategy whereby local search is applied only on individuals that 

have undergone modification by the evolutionary operators [34, 35].    

4.1 QAP and experimental setup 

The quadratic assignment problem (QAP) is one of the hardest combinatorial 

optimization problems and is frequently used as benchmark to study various heuristic 

algorithms such as greedy randomized search [18], tabu search [28, 31], ant colony 

optimization algorithms [29], simulated annealing [37], genetic algorithms (GA) [19, 

20], memetic algorithms [23, 24], etc.. In general, the QAP can be described by two n 

× n matrices A = and B=  [14]. The goal is to find a permutation ][ ija ][ ijb π  of the set 

M={1,2,3,…,n}, which minimizes the objective function C(π ) as in Eq.(7). 

∑∑
= =

=
n

l

n

t
tlltbaC

1 1
)()()( πππ          (7) 

In solving QAP, two issues are of primary concerns. One is the solution 

quality which depends on the algorithm effectiveness; the other being the 

computational cost which depends on the algorithm efficiency. Many algorithms 

generate good solutions while incurring huge computational cost. On the other hand, 

those that converge to solutions quickly tend to produce poor results. It is therefore 

necessary to strike a balance between these two factors, a primary focus of our 

previous work [19, 20, 34, 35]. In particular, we evaluate the performance of different 

algorithms both in terms of computation time and solution quality. The statistical 

significance based on t-test for PMA-SLS and PMA-DLS compared with PMA is 

evaluated for its performance in terms of computation cost. For convenience, the 

abbreviations for the different algorithms used in our study are summarized below: 
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PMA-DLS Island model parallel memetic algorithm with diversity-based 

dynamic adaptive strategy; 

PMA-SLS Island model parallel memetic algorithm with diversity-based 

static adaptive strategy; 

PMA-FLS Island model parallel memetic algorithm with fixed local search 

strategy in our previous work [34, 35]; 

PMA Island model parallel memetic algorithm with complete local search 

strategy; 

MA Canonical memetic algorithm. 

The algorithms were coded in C programming language and simulations were 

carried out on a cluster of Pentium IV 1.9 GHz workstations. Each computing node is 

configured with 256MB of RAM, running on Linux Redhat 7.0 operating system. For 

each QAP benchmark problem, we carried out 10 optimization runs and the 

algorithms were evaluated based on their average performance. 

In our empirical study, a grid-enabled solver is used to facilitate the 

implementation of the PMA, such that islands of MA individuals are executed on 

multiple computing nodes within a distributed computing framework. The 

configuration of the PMA control parameters is summarized in Table 4-1. 
Table 4-1PMA parameters setting  

MA parameters Multi-island PMA 

Population size 240 

Subpopulation size 240/M 

2 (M=2) 
Elite size 

1 (M≥3) 

Maximum number of generations 180 

Fitness scaling factor Sf 3 

Crossover probability Pc 0.8 

Mutation probability Pm 0.05 

Zerofit threshold constant Kz 5 

M ≡ number of islands (processing nodes) 

 

Except for Sf and Kz, all the above are standard GA parameters. A feasible 

solution of QAP of size n can be genetically coded as a permutation string of n 

integers, which are evaluated based on the objective function described by Eq.(7). For 
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each permutation string denoted asπ , the objective value obtained is normalized to 

obtain a fitness value f as follows:  

1 ( ) / zf C Fπ= −           (8) 

The parameter zF  is a threshold value specified for each problem and it is akin to the 

upper bound value used in many deterministic search algorithms. Since we require 

that , Eq. (8) is clipped at 0f ≥ 0f =  for ( ) zC Fπ ≥ . For this reason, we refer to zF  as a 

zerofit threshold. In our implementation of the algorithm, the threshold is defined 

as ;z zF K= ×Ω zK being an integer constant whileΩ refers to the known optimum or lower 

bound of the problem. Subsequently, the fitness values of the general population are 

scaled in order to avoid any unintentional bias. The approach for scaling is based on 

the commonly used linear scaling model [8] as follows: 

1 2F k k f= +                      (9) 

where f and F denote the fitness values before and after scaling respectively. The 

coefficients and are chosen such that 1k 2k ave aveF f= and max minfF S F= × . fS refers to the 

scaling factor, avef  the average fitness before scaling while ,  and are 

respectively the average, maximum and minimum fitness values after scaling. Based 

on these conditions, the coefficients are determined as follows: 

aveF maxF minF

1
min max

(1 )
( ) (1 )

f ave

f f av

S f
k

ef S f S f
− ×

=
× − + − ×

                    (10) 

2 1(1 ) avek k f= − ×                     (11) 

where minf is the minimum fitness and maxf the maximum fitness before scaling.  

Through a series of empirical study and based on results and experience from 

previous work [34, 35], the following migration control parameters have been adopted 

in the PMA.  

Migration Interval  Migration occurs every 10 generations; 

Migration Rate  One chromosome per migration phase; 

Migration Policy  Elitist strategy, whereby the best individual in one 

subpopulation replaces the worst in the other; 

           Migration Topology  One-way ring topology. 

The search stops or terminates when either one of the following criteria is satisfied: 

i. Solution stalls for more than 70 successive generations;                          

 15



ii.Maximum number of generations has been reached. 

Several criteria defined to measure the performance are listed as follows: 

CPU time  Average computation time in seconds upon termination of the 

algorithm; 

Generation  Average number of generations elapsed before the occurrence of 

the best solution; 

TG  Average number of generations elapsed before the algorithm terminates; 

Average  Average objective value of the solutions obtained for all the 

simulation runs; 

Average gap  Difference between the Average and the best-known value of 

the objective function; 

Best  Best solution obtained among all the simulation runs; 

Gap  Difference between the best-found value and the best-known value of a 

benchmark problem;         

Success rate  Number of times the algorithm finds the best-known solution 

out of all the simulation runs.                 

Among these criteria, CPU time is used to measure the computational cost of the 

algorithms in wall-clock time. Generation and TG provide a measure on the 

convergence rate of the algorithms in terms of the number of iterations rather than the 

wall-clock time. Average, Average gap, Best, Gap and Success rate serve as the 

criteria for measuring the solution quality of the algorithm. 

4.2 Results comparison  PMA-DLS vs. PMA-SLS 

For parameters pertaining to PMA-SLS in Equation (4), the subpopulation size,ξ , is a 

constant for certain number of islands in the PMA and μ  is set to zero. The other two 

parameters ),( ησ  were tuned in order to adjust the local search frequency for each 

generation gen. To decide on the appropriate configuration, significant effort was 

expended on parameters tuning in order to achieve a desirable level of performance. 

Various parameters setting for Gaussian function were experimented to configure the 

PMA-SLS. For example, in Fig. 4-1, three Gaussian functions denoted as 1γ , 2γ  and 

3γ  with different parameters setting are shown. The corresponding number (Num) of 

individuals where local search is applied can be determined based on Eq. (4). Local 
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search frequencyγ  in Eq. (4) was updated every 10 generations. According to Fig. 4-

1, application of 1γ , 2γ  and 3γ will result in different local search frequency applied in 

the PMA. 3γ , the upper curve results in higher frequency of local search while 2γ , the 

lower curve indicates a lower frequency. Based on the application of 1γ , 2γ  and 3γ , the 

corresponding PMA-SLS-1, PMA-SLS-2, and PMA-SLS-3 were derived respectively. 

Meanwhile, PMA-DLS is more straightforward, with fewer parameters setting 

required. Only parameter k is required to be set in Equation (6). Here, k is set to 10.  
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Fig. 4-1 Application of Gaussian functions to determine number of chromosomes selected for local 

search according to PMA-SLS 

 

Table 4-2 Comparison of PMA-DLS and PMA-SLS with 1γ , 2γ  and 3γ  

CPU time Generation TG Average Average gap Best Gap Success rate
sko100b 2-island PMA-SLS-1 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%
153890 PMA-SLS-2 563.80 134.10 174.70 154114.60 0.16% 153962 0.05% 0.00%

PMA-SLS-3 903.20 119.20 171.30 154016.60 0.08% 153904 0.01% 0.00%
PMA-DLS 859.40 125.30 169.00 154020.80 0.08% 153920 0.02% 0.00%

 

We first carried out experimental study to gauge the effect of the choice of 

Gaussian function on the performance of PMA-SLS. The results presented in Table 4-

2 are based on comparison of PMA-SLS and PMA-DLS on one particular benchmark. 

This experiment shows that PMA-DLS could produce good solutions with 0.08% 

average gap, consuming 859.40 seconds of CPU time. In comparison, the 3 variants of 

PMA-SLS vary in terms of solution quality and CPU time. In terms of CPU time, 

PMA-SLS-3 requires as much as 903.20 seconds while PMA-SLS-2 takes up 563.80 

seconds of CPU time. On solution quality, the average gap of the PMS-SLS with the 
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three configurations falls into the range of 0.08% to 0.16%. This may be due to the 

different number of individuals undergoing local search in PMA-SLS, especially at 

the later stages of the evolution process. For example, the number of individuals 

whereby local search is applied in PMA-SLS-3 is much larger than that for PMA-

SLS-2 (when gen > 100). Consequently, PMA-SLS-3 produced better solution 

(0.08%) quality than PMA-SLS-2 (0.16%). However, PMA-SLS-3 takes up more 

computational time. Between the 3 selection functions experimented, it appears that 

1γ ( 500,200 == ησ ) produced the most competitive results in terms of solution quality 

and computational cost.  

4.3 Results comparison  PMA-SLS, PMA-DLS and PMA 

To demonstrate the advantage of PMA-SLS and PMA-DLS, a comparison among 

PMA-SLS, PMA-DLS and PMA on the two-island model for the same benchmark, 

sko100b, is shown in Table 4-3.  
Table 4-3 Comparison among PMA-SLS, PMA-DLS and PMA 

CPU time Generation TG Average Average gap Best Gap Success rate
sko100b 2-island PMA 1350.00 94.70 145.90 153950.40 0.04% 153890 0.00% 20.00%
153890 PMA-SLS 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%

PMA-DLS 859.40 125.30 169.00 154020.80 0.08% 153920 0.02% 0.00%  

In Table 4-3, PMA-SLS and PMA-DLS produce competitive solutions 

although the frequency of local search of PMA-SLS and PMA-DLS never exceed that 

of PMA which maintain the highest local search frequency throughout the evolution 

process. This is due mainly to the ability of the PMA-SLS and PMA-DLS to manage 

a more desirable diversity profile as the search progresses, especially at the later stage 

of the evolution process, compared to the poor diversity profile in PMA. The diversity 

of each subpopulation for PMA-SLS, PMA-DLS and PMA, measured by the entropy, 

was traced in our simulation and shown in Fig. 4-2. 

According to Fig. 4-2, PMA-SLS and PMA-DLS can consistently maintain a 

good level of diversity as the evolution progresses. However, the diversity of PMA 

shows a significant drop in entropy, especially at the later stages, indicating that local 

search has a tendency to speed up convergence significantly. From an evolutionary 

process point of view, PMA results in poorer diversity due to excessive localized 

searches, especially at the later stage of evolution. On the other hand, PMA-SLS 

adjusts the local search frequency according to a specific Gaussian function. PMA- 

DLS adjusts the local search frequency based on changes in population diversity. The 
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Fig. 4-2 Comparison of diversity among PMA-SLS, PMA-DLS and PMA 

 

number of individuals to apply local search is then adjusted dynamically, enabling 

PMA-DLS to maintain a consistent level of population diversity. This in turn 

enhances the capacity of PMA-DLS to produce good solutions. A significant 

observation from Table 4-3 is that PMA-SLS, PMA-DLS and PMA achieved almost 

the same level of solution quality, with PMA incurring higher computational cost due 

to the intensive local search. PMA-SLS and PMA-DLS therefore show a potential for 

reducing computational time significantly with little or no lost of solution quality. 

This is mainly attributed to its capability to maintain a higher level of population 

diversity.  

4.4 Overall comparison of results and analysis 

For the purpose of detailed comparison among PMA-SLS, PMA-DLS and PMA, 

Tables 4-4 to 4-9 summarize the empirical results of testing on a diverse set of large 

scale QAP benchmarks. The benchmark problems considered in the present study are 

classes of synthetic problems randomly generated or created to study the robustness of 

algorithms for solving QAPs [3]. The best-known value corresponding to each 

instance of QAP is shown in the first column of Tables 4-4 to 4-9. The characteristics 

of these benchmark problems are summarized below: 

          sko  This group of benchmarks was proposed by Skorin-Kapov [28]. The 

distance matrices of these problems are rectangular and the entries of the 

flow matrices are pseudo-random numbers.  
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          tai  The instances tai-a are uniformly generated and was proposed in [31], 

while the instances tai-b were introduced in [32]. Problems of tai-b 

group are asymmetric and randomly generated. 

          wil  This group of benchmarks was proposed by Wilhelm and Ward [37], the 

distance matrices of these problems are rectangular. 

          tho  This group of benchmarks was proposed by Thonemann and Bolte [36], 

the distance matrices of these instances are rectangular. 

Tables 4-4 and 4-5 present a detailed simulation results for PMA-DLS, PMA, 

PMA-SLS and PMA-FLS [34, 35] on sko100b and tai100b benchmarks, respectively. 

Tables 4-6 to 4-9 show the simulation results on the other classes of QAP, namely, 

sko100*, tai100a, wil100 and tho150, respectively. The size of all these problems 

considered in the study is relatively large.  
Table 4-4 Results of testing on sko100b benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
sko100b MA 3096.50 127.30 160.50 153955.60 0.04% 153890 0.00% 20.00%
153890 2-island PMA-DLS 859.40 125.30 169.00 154020.80 0.08% 153920 0.02% 0.00%

PMA-SLS 875.20 113.60 168.40 154012.80 0.08% 153904 0.01% 0.00%
PMA-FLS[34] 266.80 182.70 252.70 154494.20 0.39% 154160 0.18% 0.00%

PMA 1350.00 94.70 145.90 153950.40 0.04% 153890 0.00% 20.00%
4-island PMA-DLS 885.70 131.40 170.00 153977.40 0.06% 153900 0.01% 0.00%

PMA-SLS 898.00 137.10 178.10 153990.80 0.07% 153902 0.01% 0.00%
PMA-FLS[35] 174.50 282.50 352.50 154213.80 0.21% 153952 0.04% 0.00%

PMA 1445.90 122.20 174.60 153952.20 0.04% 153898 0.01% 0.00%
6-island PMA-DLS 413.80 126.80 164.20 153951.20 0.04% 153890 0.00% 20.00%

PMA-SLS 429.40 130.20 168.20 153985.00 0.07% 153890 0.00% 10.00%
PMA-FLS[35] 148.80 213.30 283.30 154254.60 0.24% 154074 0.12% 0.00%

PMA 694.30 104.80 154.50 153925.40 0.02% 153890 0.00% 20.00%
10-island PMA-DLS 276.80 98.30 159.50 153974.40 0.05% 153924 0.02% 0.00%

PMA-SLS 289.30 95.20 148.80 153987.80 0.06% 153890 0.00% 10.00%
PMA-FLS[35] 119.60 150.80 220.80 154195.80 0.20% 153936 0.03% 0.00%

PMA 439.00 111.20 144.40 153942.60 0.04% 153890 0.00% 30.00%
 

Table 4-5 Results of testing on tai100b benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
tai100b 2-island PMA-DLS 694.70 94.70 124.30 1186119285.20 0.01% 1185996137 0.00% 50.00%

1185996137 PMA-SLS 782.40 106.70 134.00 1186275856.50 0.02% 1185996137 0.00% 40.00%
PMA-FLS[34] 186.90 175.30 245.30 1188882832.20 0.24% 1186007112 0.00% 0.00%

4-island PMA-DLS 633.40 105.00 122.00 1186121434.00 0.01% 1185996137 0.00% 80.00%
PMA-SLS 647.50 92.60 102.30 1186007361.40 0.00% 1185996137 0.00% 80.00%

PMA-FLS[35] 178.10 268.80 332.00 1187539521.00 0.13% 1186007112 0.00% 0.00%
6-island PMA-DLS 342.40 65.20 107.20 1186132401.50 0.01% 1185996137 0.00% 70.00%

PMA-SLS 356.60 88.30 104.90 1186058956.40 0.01% 1185996137 0.00% 70.00%
PMA-FLS[35] 160.10 233.70 296.70 1187892570.00 0.16% 1185996137 0.00% 10.00%

10-island PMA-DLS 214.50 87.00 112.80 1186064568.60 0.01% 1185996137 0.00% 80.00%
PMA-SLS 220.70 68.70 82.70 1186053344.20 0.00% 1185996137 0.00% 80.00%

PMA-FLS[35] 148.00 250.00 320.00 1187927883.00 0.16% 1186052259 0.00% 0.00%
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Table 4-6 Results of testing on sko100* benchmarks 

CPU time Generation TG Average Average gap Best Gap Success rate
sko100a 2-island PMA-DLS 852.80 118.80 164.50 152156.10 0.11% 152069 0.03% 0.00%
152002 PMA-SLS 883.60 133.80 175.10 152188.20 0.12% 152042 0.03% 0.00%

PMA-FLS[34] 194.00 203.40 273.40 152322.80 0.21% 152122 0.08% 0.00%
4-island PMA-DLS 855.30 132.40 171.60 152104.10 0.07% 152059 0.04% 0.00%

PMA-SLS 885.20 142.40 176.80 152119.00 0.08% 152058 0.04% 0.00%
6-island PMA-DLS 416.60 131.60 170.80 152126.20 0.08% 152044 0.03% 0.00%

PMA-SLS 431.90 138.90 176.90 152109.40 0.07% 152067 0.04% 0.00%
10-island PMA-DLS 273.50 134.20 174.20 152093.60 0.06% 152035 0.03% 0.00%

PMA-SLS 283.20 98.10 156.00 152102.80 0.06% 152042 0.03% 0.00%
sko100c 2-island PMA-DLS 847.30 120.60 167.90 147928.60 0.05% 147862 0.00% 10.00%
147862 PMA-SLS 939.30 121.80 168.40 147934.80 0.05% 147862 0.00% 10.00%

PMA-FLS[34] 184.40 205.80 275.80 148140.40 0.18% 148050 0.13% 0.00%
4-island PMA-DLS 826.30 112.20 163.00 147894.00 0.02% 147862 0.00% 20.00%

PMA-SLS 845.90 111.40 160.50 147908.20 0.03% 147862 0.00% 10.00%
6-island PMA-DLS 401.20 124.20 173.00 147887.20 0.02% 147868 0.00% 30.00%

PMA-SLS 416.80 106.40 151.80 147885.60 0.02% 147862 0.00% 20.00%
10-island PMA-DLS 258.40 102.40 125.60 147885.20 0.02% 147862 0.00% 40.00%

PMA-SLS 284.20 107.90 151.00 147895.40 0.02% 147862 0.00% 10.00%
sko100d 2-island PMA-DLS 869.60 136.10 170.80 149742.20 0.11% 149656 0.05% 0.00%
149576 PMA-SLS 883.00 111.00 166.90 149803.60 0.15% 149618 0.03% 0.00%

PMA-FLS[34] 232.10 259.90 327.40 150036.80 0.31% 149732 0.10% 0.00%
4-island PMA-DLS 813.50 137.00 177.20 149729.20 0.10% 149648 0.05% 0.00%

PMA-SLS 881.20 146.70 180.00 149752.00 0.12% 149630 0.04% 0.00%
6-island PMA-DLS 429.00 134.20 168.40 149707.60 0.09% 149620 0.03% 0.00%

PMA-SLS 436.80 135.80 173.80 149699.40 0.08% 149578 0.00% 0.00%
10-island PMA-DLS 279.60 154.60 180.00 149685.20 0.07% 149608 0.02% 0.00%

PMA-SLS 312.60 120.10 167.20 149681.60 0.07% 149584 0.01% 0.00%
sko100e 2-island PMA-DLS 809.40 111.30 148.00 149198.20 0.03% 149150 0.00% 30.00%
149150 PMA-SLS 845.40 121.00 166.70 149205.80 0.04% 149150 0.00% 10.00%

PMA-FLS[34] 235.50 252.90 322.90 149642.20 0.33% 149198 0.03% 0.00%
4-island PMA-DLS 864.80 119.80 173.60 149188.80 0.03% 149150 0.00% 10.00%

PMA-SLS 898.50 114.30 164.50 149202.60 0.04% 149150 0.00% 10.00%
6-island PMA-DLS 425.00 107.80 144.80 149183.60 0.02% 149150 0.00% 40.00%

PMA-SLS 452.10 113.70 156.90 149179.20 0.02% 149150 0.00% 30.00%
10-island PMA-DLS 251.20 61.00 131.00 149180.80 0.02% 149150 0.00% 40.00%

PMA-SLS 274.20 91.20 130.00 149176.40 0.02% 149150 0.00% 40.00%
sko100f 2-island PMA-DLS 825.70 98.90 155.20 149218.03 0.12% 149096 0.04% 0.00%
149036 PMA-SLS 888.40 104.60 153.70 149232.80 0.13% 149126 0.06% 0.00%

PMA-FLS[34] 206.50 214.80 284.80 149496.60 0.31% 149228 0.13% 0.00%
4-island PMA-DLS 813.90 130.20 173.40 149144.20 0.07% 149036 0.00% 20.00%

PMA-SLS 872.10 126.10 166.70 149150.40 0.08% 149036 0.00% 10.00%
6-island PMA-DLS 423.20 151.40 180.00 149145.20 0.07% 149092 0.04% 0.00%

PMA-SLS 451.70 136.10 172.30 149205.40 0.11% 149078 0.03% 0.00%
10-island PMA-DLS 282.40 111.20 158.80 149162.40 0.08% 149104 0.05% 0.00%

PMA-SLS 300.30 107.00 161.40 149203.40 0.11% 149114 0.05% 0.00%
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Table 4-7 Results of testing on tai100a benchmark 

CPU timeGeneration TG Average Average gap Best Gap Success rate
tai100a 2-island PMA-DLS 866.20 127.90 161.80 21442193.71 1.50% 21379594 1.18% 0.00%

21125314 PMA-SLS 860.00 127.20 164.60 21458262.60 1.58% 21382118 1.22% 0.00%
PMA-FLS[34] 222.80 238.50 308.50 21464686.20 1.61% 21335594 1.00% 0.00%

4-island PMA-DLS 889.20 156.20 180.00 21380930.80 1.21% 21362016 1.12% 0.00%
PMA-SLS 889.60 140.20 170.90 21420954.60 1.40% 21352956 1.08% 0.00%

6-island PMA-DLS 433.60 146.40 180.00 21368255.10 1.15% 21237278 0.53% 0.00%
PMA-SLS 451.40 152.50 180.00 21373508.00 1.17% 21270370 0.69% 0.00%

10-island PMA-DLS 294.80 120.80 168.40 21347190.00 1.05% 21306288 0.86% 0.00%
PMA-SLS 309.60 123.60 169.50 21382655.00 1.21% 21295312 0.80% 0.00%  

Table 4-8 Results of testing on wil100 benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
wil100 2-island PMA-DLS 833.90 120.10 167.10 273147.20 0.04% 273078 0.01% 0.00%
273038 PMA-SLS 882.10 114.50 166.20 273198.80 0.06% 273054 0.01% 0.00%

PMA-FLS[34] 218.00 226.10 292.80 273458.20 0.15% 273236 0.07% 0.00%
4-island PMA-DLS 881.40 137.00 180.00 273101.60 0.02% 273066 0.01% 0.00%

PMA-SLS 895.20 115.20 165.60 273228.60 0.07% 273054 0.01% 0.00%
6-island PMA-DLS 433.40 128.20 178.00 273092.80 0.02% 273056 0.01% 0.00%

PMA-SLS 445.00 99.30 164.30 273103.80 0.02% 273044 0.00% 0.00%
10-island PMA-DLS 272.40 88.20 153.00 273102.60 0.02% 273054 0.01% 0.00%

PMA-SLS 295.20 93.90 161.20 273128.60 0.03% 273054 0.01% 0.00%  
Table 4-9 Results of testing on tho150 benchmark 

CPU time Generation TG Average Average gap Best Gap Success rate
tho150 2-island PMA-DLS 7136.20 139.10 177.00 8146734.00 0.16% 8142504 0.11% 0.00%

8133398 PMA-SLS 7290.30 140.30 174.00 8148332.60 0.18% 8142700 0.11% 0.00%
PMA-FLS[34] 1428.50 308.50 368.20 8158144.60 0.30% 8140370 0.09% 0.00%

4-island PMA-DLS 4993.80 141.60 172.00 8143158.00 0.12% 8137465 0.05% 0.00%
PMA-SLS 5258.40 148.40 180.00 8144249.60 0.13% 8138428 0.06% 0.00%

PMA-FLS[35] 935.10 317.70 376.80 8162408.00 0.36% 8145990 0.15% 0.00%
6-island PMA-DLS 3027.20 156.80 180.00 8142624.80 0.11% 8137004 0.04% 0.00%

PMA-SLS 3267.40 156.20 180.00 8145297.20 0.15% 8142554 0.11% 0.00%
PMA-FLS[35] 885.30 332.50 386.00 8157363.67 0.29% 8151408 0.22% 0.00%

10-island PMA-DLS 1953.80 155.40 180.00 8140869.60 0.09% 8139868 0.07% 0.00%
PMA-SLS 2004.20 136.00 177.20 8144993.20 0.14% 8142102 0.11% 0.00%

PMA-FLS[35] 605.10 418.50 462.40 8165464.60 0.39% 8154998 0.27% 0.00%
 

In Table 4-4, from the viewpoint of computational time, compared to the serial 

MA, much shorter computational time is consumed by PMA-SLS, PMA-DLS, PMA-

FLS and PMA, indicating the advantage of employing parallel memetic algorithms. 

From a solution quality point of view, PMA, PMA-DLS and PMA-SLS can achieve 

much better quality than PMA-FLS. This is evident from the much improved solution 

gap and the higher success rate achieved, which can be attributed to the powerful 

search capability of memetic algorithm. Furthermore, PMA-DLS and PMA-SLS can 

reduce the computational time significantly with little or no lost in solution quality 

compared to PMA which benefited from the more desirable population diversity 

profile as a result of the diversity-adaptive strategies employed. The comparison 

 22



among PMA-SLS, PMA-DLS, PMA and PMA-FLS on sko100b benchmark is shown 

in Fig. 4-3. 
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(a) Computation time                                                (b) Solution quality 

Fig. 4-3 Comparison among PMA-SLS, PMA-DLS, PMA and PMA-FLS on sko100b benchmark 

 

The plot in Fig. 4-3(b) shows that PMA-DLS, PMA-SLS and PMA improve 

the solution quality significantly compared to PMA-FLS. It is noted that the 

maximum number of generations for PMA-FLS was set at 500. Instead, the maximum 

number of generations for PMA-DLS, PMA-SLS and PMA was set to 180. This is 

indicative of the powerful search capability and quick convergence speed of the PMA. 

As for the computational time shown in Fig. 4-3(a), the greater reliance on local 

search makes PMA more time-consuming than the PMA-FLS. However, with the 

island model paradigm of the parallel memetic algorithm, a distributed computing 

framework can help to reduce the computational time significantly. Furthermore, the 

diversity-based adaptive local search strategy both in static and dynamic manner used 

in PMA-SLS and PMA-DLS, respectively, improves the efficiency of the PMA 

remarkably.  

In addition, it is observed from experimental results that lower accuracy 

solutions are obtained using shorter CPU time, and higher accuracy solutions are 

obtained using longer CPU time as shown in Fig. 4-4 for sko100b as an example. The 

data points on each line from the first data point to the last one denote MA, PMA, 

PMA-DLS, PMA-SLS and PMA-FLS, respectively. From Fig. 4-4, it is also obvious 

that PMA-DLS and PMA-SLS produce solutions that are competitive with that 

obtained in PMA and MA at significantly less computational cost. Moreover, PMA-

DLS and PMA-SLS achieve much higher solution quality than PMA-FLS with little 
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increase in CPU time. The trend is more evident when the number of processors 

increases.    
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Fig. 4-4 Two-dimensional plot of MA, PMA, PMA-DLS, PMA-SLS and PMA-FLS on sko100b 

benchmark 

To determine the significance of the reduced computational time by PMA-

DLS and PMA-SLS, a statistical t-test was used (p<0.05), with the null hypothesis of 

having no difference between PMA-DLS and PMA, as well as between PMA-SLS 

and PMA. Based on t-test for statistical significance, the mean and the associated 

results of the one tail difference of two independent means, taken over 10 independent 

trials for sko100b for PMA-DLS, PMA-SLS and PMA, are presented in Table 4-10.  
Table 4-10 Mean and the one tail difference of t-test between PMA-DLS and PMA as well as between 

PMA-SLS and PMA 

PMA-SLS Mean PMA-DLS Mean PMA Mean p- PMA-SLS vs. PMA p- PMA-DLS vs. PMA
2-island 875.2 859.4 1350 0.00010793 4.17256E-05
4-island 898 885.7 1445.9 1.0808E-11 3.96277E-11
6-island 429.4 413.8 694.3 1.331E-05 1.36381E-05

10-island 289.3 276.8 439 0.00010352 3.83569E-05  

In Table 4-10, for all cases, the mean of both PMA-DLS and PMA-SLS is 

smaller than that of PMA and the value p<0.05 indicates that PMA-DLS and PMA-

SLS indeed was able to reduce the computational time compared to PMA with high 

level of statistical significance. This validates the notion of PMA-DLS and PMA-SLS 

being able to search more efficiently than PMA to achieve a comparable solution 

quality.  

Similar to the sko100b benchmark, the effect of multiple islands processing is 

plotted as in Fig. 4-5 for the tai100b benchmark. The results show that PMA-DLS and 
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PMA-SLS can achieve much better solution quality with comparable computational 

time, especially for the case where the number of processors increases to 10 machines. 

It is also observed that the tai100b QAP benchmark shows a much higher Success 

rate, indicating that the PMA-DLS has greater success in locating the global 

optimum. This implies that the PMA-DLS is capable of locating the best-known 

solution more frequently than the PMA-FLS. 
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Fig. 4-5 Comparison among PMA-DLS, PMA-SLS and PMA-FLS on tai100b benchmark 
 

In Tables 4-6 and 4-8, based on observations of the two criteria, Gap and 

Success Rate, the results of the different benchmarks (sko100* and wil100) show that 

PMA-DLS and PMA-SLS can significantly improve the solution quality with 

comparable computational time, especially so when the number of processors 

increases to 10 machines. In addition, the results in Table 4-7 show that PMA-DLS 

and PMA-SLS are even more superior compared to PMA-FLS, even for the 

seemingly difficult class of benchmarks, tai100a. Remarkable improvement in terms 

of solution quality was observed. The tai100a corresponds to a class of problems 

randomly generated by Taillard using a uniform distribution. In [32], Taillard noted 

that for this type of randomly generated instances, finding good solutions (about 1% 

and 2%) is easy, but it is extremely difficult to find the optimum. This type of 

randomly generated instances is not that significant for practical applications of the 

QAP. As such, a set of non-uniformly generated random instances (tai*b) with the 

same characteristics as real-life problems was defined. As shown in Table 4-9, for the 

very large scale benchmark, tho150, both PMA-DLS and PMA-SLS can improve the 

solution quality significantly.  
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4.5 Discussion 

When judged against existing results available in the literature, it is noted that the 

results for PMA-SLS and PMA-DLS of several instances are much better than that of 

the MAs developed by other authors. For example, our results on the tai100a 

benchmark problem in Table 4-7 using the PMA-DLS are better than that found in 

[24]. The Average gap of 1.089% for tai100a was reported in [24], while the Average 

gap of PMA-DLS for tai100a on 10 machines is 1.05%. Also the results of tai100b 

for PMA-SLS are much better than that shown in [23]. The Average gap of tai100b 

was reported as 0.026% in [23], with the Success rate being less than 50%. On the 

other hand, Average gap achieved by our PMA-SLS (0.01%) and PMA-DLS (0.01%) 

is much better than that in [23], and the Success rate is very commendable, being as 

high as 80%. Furthermore, it is worth nothing that the PMA-SLS and PMA-DLS are 

also capable of attaining search quality that is significantly better than that obtained in 

[24] on the sko100a problem. As shown in Table 4-6, on the sko100a benchmark, the 

Average gap obtained in [24] was 0.096%, while we were able to reduce this value to 

0.06%. As for the very large benchmark, tho150, the empirical results in Table 4-9 

show that the best solution quality on average, 0.09%,  is much better compared to 

that reported in [24], which was 0.151%.  

Furthermore, based on the comparison between PMA-SLS and PMA-DLS, 

there are three advantages of PMA-DLS which determine the number of individuals 

undergoing local search based on online dynamic population diversity. First, the 

number of individuals to be selected for local search is made dynamic and adaptive to 

online fluctuation of population diversity. Using this diversity-based dynamic 

adaptation mechanism, it is able to set a high number of individuals for undergoing 

local search if the population diversity is high. If the population diversity is very low, 

it is able to decrease the number of candidates undergoing local search to reduce the 

additional computational effort. In addition, for the island model PMA, the diversity-

based dynamic adaptive local search is able to adjust the number of individuals for 

local search according to the different diversity fluctuation tendency in each island.    

Secondly, the PMA-DLS adjusts the local search frequency online, avoiding 

the laborious task of parameters tuning. Therefore, PMA-DLS is desirable in 

producing more robust search performance, resulting in overall improvement in 

solution quality.  
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Thirdly, an intrinsic characteristic of PMA-DLS is the Markovian property, in 

deciding the frequency of applying local search. Equation (6) computes the number of 

chromosomes that undergo local learning in the current generation based on the 

previous k generations and the current generation. This property is consistent with the 

theoretical foundation of various evolutionary algorithms, such as genetic algorithms 

and memetic algorithms [30]. 

5 Conclusion and future work 

This paper proposes two diversity-based adaptive strategies in the island model 

parallel memetic algorithm with adaptive local search frequency. Instead of having a 

constant local search frequency, PMA-SLS adopted a diversity-based static adaptive 

local search strategy based on parameterized Gaussian distribution. However, in the 

PMA-SLS strategy, its efficient use presupposes tedious tuning of the parameters for 

the Gaussian function. The Gaussian function used to decide on the local search 

frequency was problem specific. It was configured through trial-and-error 

experimentation without generalization or analysis of the characteristics of the PMA 

with respect to population diversity, an important characteristic indicative of the 

population convergence level. Furthermore, instead of fastidious tuning of the 

parameters setting for the Gaussian Function, a diversity-based dynamic adaptive 

local search strategy is employed in PMA-DLS such that the local search frequency is 

adaptively adjusted based on the online fluctuation of population diversity. This 

diversity-adaptive approach avoids premature convergence resulting from fast 

decreasing population diversity, as well as reduces the computational effort.  

The experimental study verifies that PMA-SLS and PMA-DLS show the 

ability of producing solutions that are competitive with that obtained in PMA at 

significantly less computational cost for solving large scale QAP. The higher success 

rate of PMA-DLS also indicates the improved solution precision due to the intrinsic 

parallelism and the higher level of diversity maintained during the evolutionary 

process. Furthermore, PMA-DLS achieves more reliable solutions than PMA-SLS and 

is more robust, being less sensitive to the parameters setting. Hence, there is not much 

effort expended on tedious parameters tuning which quite often frustrates the setting-

up process for PMA-SLS. 
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Without doubt, this paper will elicit more relevant research work on this topic. 

The issue on applying different levels of the local search frequency in selecting 

memes in multi-meme PMA paradigm is meaningful and challenging, deserving 

further study. The diversity-based adaptive PMA also demonstrates its potential in 

solving other computationally demanding optimization problems. 
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