
Adaptive Cellular Memetic Algorithms

Nguyen Quang Huy nguy0046@ntu.edu.sg
School of Computer Engineering, Nanyang Technological University, 639798,
Singapore

Ong Yew Soon asysong@ntu.edu.sg
School of Computer Engineering, Nanyang Technological University, 639798,
Singapore

Lim Meng Hiot emhlim@ntu.edu.sg
School of Electrical and Electronic Engineering, Nanyang Technological University,
639798, Singapore

Natalio Krasnogor Natalio.Krasnogor@nottingham.ac.uk
School of Computer Science, Jubilee Campus, University of Nottingham, Nottingham,
NG8 1BB, United Kingdom

Abstract
A Cellular Genetic Algorithm (CGA) is a decentralized form of GA where individuals
in a population are usually arranged in a 2-D grid and interactions among individuals
are restricted only within a set neighborhood. In this paper, we extend the notion of cel-
lularity to Memetic Algorithms (MA), a configuration termed Cellular Memetic Algo-
rithm (CMA). In addition, we propose adaptive mechanisms that tailor the amount of
exploration versus exploitation of local solutions carried out by the CMA. We system-
atically benchmark this adaptive mechanism and provide evidence that the resulting
adaptive CMA outperforms other methods both in the quality of solutions obtained
and the number of function evaluations for a range of continuous optimization prob-
lems.

Keywords
Memetic Algorithm, Parallel Genetic Algorithm, Cellular Genetic Algorithm, Cellular
Memetic Algorithm

1 Introduction

Evolutionary algorithm (EA) serves as appealing optimisation strategy for solving non-
linear programming problems characterized with non-convex, disjoint and noisy solu-
tion spaces. Unlike conventional numerical optimization methods, evolutionary algo-
rithms such as Genetic algorithm (GA), produce new design points that do not use
information about the local slope of the objective function and are thus not prone to
stalling at local optima. GA was inspired by Darwinian’s survival of the fittest strategy
with sexual reproduction, and Mendel’s theory of genetics as the basis of biological
inheritance. GA maintains a population of solutions; making use of competitive se-
lection, recombination and mutation operators to generate new solutions which are
biased towards better regions of the search space. Their popularity also lies in the ease
of implementation and their ability to converge close to the global optimum. Although
relatively easy to implement, a naive GA will usually exhibit one (if not both) of the

c©2007 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

following problems: (a) very slow convergence to local optima; (b) rapid diversity loss.
Both of these problems often limits the practicality of GAs on many complex real world
problems where computational time is a crucial consideration. Hence, it is now well es-
tablished that “canonical” GAs are not suited for fine-tuning in complex search spaces,
and that hybridization with other local search techniques can greatly improve the effi-
ciency of search (Ong and Keane, 2004; Krasnogor and Smith, 2005).

The Memetic Algorithm (MA) is population-based meta-heuristic search method
inspired by both Darwinian principles of evolution by natural selection and Dawkins’
notion of a meme defined as a unit of cultural evolution that is capable of local refine-
ments. That is, a memetic model for optimisation exhibits the plasticity of individuals
that a strictly genetic model fails to capture. Recent studies on MAs have revealed their
successes on a wide variety of optimization problems (Burke et al., 2001; Ishibuchi et al.,
2003; Hart et al., 2004b; Lim and Xu, 2005; Tang et al., 2007; Hasan et al., 2009). Theoreti-
cal and empirical analyses (Houck et al., 1997; Digalakis and Margaritis, 2000; Ong and
Keane, 2004; Krasnogor and Smith, 2005, 2008; Yu et al., 2009) have shown that MAs
not only converge to high quality solutions, but also search more efficiently than their
conventional counterparts. In a more diverse context, MAs are also commonly known
as hybrid EAs, Baldwinian EAs, Lamarkian EAs, cultural algorithms and genetic local
search. For an overview on the recent advances in the field, the reader is referred to
two special issues on MA (Hart et al., 2004a; Ong et al., 2007, 2008).

An evolutionary algorithm (EA) without any structure is usually referred to as a
panmictic EA and the large majority of Memetic Algorithm have been implemented
in this fashion. On the other hand, a popular way of structuring the population is by
recurring to a lattice-like topology in which individual interact only with their nearest
neighbors. A cellular GA (CGA) is a prime exemplar of this technique (Martin et al.,
1997; Pettey, 1997). Structured GAs, not only favor a parallel implementation due to
the decentralized management of the populations, but also they are generally known to
provide better sampling of the search space and therefore perform well in many cases
(Bradwell et al., 1999; Alba and Troya, 2002; Tang et al., 2006). Earlier works (Muh-
lenbein et al., 1991; Baluja, 1993) have demonstrated the efficacy of CGA for complex
optimization tasks. The small overlap of neighborhoods and spatial structure of CGA
induces a slow diffusion of information throughout the whole population. This has the
advantage of preventing, to a large extend, premature convergence, i.e. problem (b)
mentioned above. The drawback of CGAs, however, is that significantly greater effort
is often required before converging to near global optimum. In this respect, CGA has
great potential for performance enhancement by equipping it with better exploitation
capabilities. Thus the synergy between CGA and local search procedures was investi-
gated by Folino et al. in (Folino et al., 1998). By combining CGA with a random walk
local search, the authors achieved better convergence rate on the satisfiability problems.
Later, Alba et. al. (Alba et al., 2005) formalized this class of algorithms under a frame-
work named cellular memetic algorithm (CMA). The work of Alba, (Alba et al., 2005),
among many others such as Hart (1994); Goldberg and Voessner (1999); Krasnogor and
Smith (2000, 2005); Ong et al. (2006); Krasnogor and Smith (2008), have highlighted
some important design issues that must be taken into consideration when designing
hybrid evolutionary-local search algorithms, including CMA.

In this paper, the focus is on the incorporation of suitable local improvement mech-
anisms for enhancing the evolutionary search efficiency of CGA. In particular, we begin
with a study on the canonical Cellular MA or CMA in short. To facilitate a healthy bal-
ance in exploration (global search) and exploitation (local improvement) under a fixed

2 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

computational budget, we proposed an adaptive Cellular MA. In contrast to the canon-
ical MAs and CGAs, the Adaptive Cellular MA (ACMA) contains autonomic mecha-
nisms for controlling the local search frequency, i.e., how often should local learning
be applied at each stage of the algorithm, and defining which individuals in the pop-
ulation will undergo local improvements. In ACMA, adaptation is carried out based
on the distribution or diversity of a population. In particular, we use fitness values to
estimate the level of similarity between individuals and as a basis for applying local
search on different groups of individuals selectively, thus offering ease of implementa-
tion. This work thus generalises and extends (Krasnogor and Smith, 2000) in its use of
fitness diversity as a control “knob” for tuning the exploration/exploitation balance in
CMA. Empirical studies on both CMA and ACMA are conducted using a series of com-
monly used benchmark test functions. Results obtained show that ACMA converges to
competitive solutions at significantly lower computational cost compared to the canon-
ical CMA and MA. Furthermore, ACMA is shown to display better robustness in terms
of solution quality on the problems considered.

This paper is organized in the following manner. Section II presents a brief
overview of the Cellular GA. The canonical Cellular MA and the proposed Adap-
tive CMA are presented in section III. Section IV summarizes our empirical studies
on continuous parametric benchmark functions and provides a comprehensive quan-
titative and statistical comparison of CGA, multistart local search, CMA and ACMA.
The search performances of the various algorithms in terms of solution quality, com-
putational effort, and solution precision are also reported in the section followed by
analysis of the results obtained. Finally, Section V concludes the paper.

2 Cellular Genetic Algorithm

In the Cellular GA, a lattice structure is used to represent the neighborhood relation
between individuals in the population. Individuals can only exchange information,
for example through crossover or other cooperative strategy, with other individuals
constrained within a small and localised region of this lattice structure (see Figure 1).
These partially overlapped small neighborhoods, which provide structure to CGA pop-
ulation, help to promote the preservation of diversity (Spiessens and Manderick, 1991)
and hence facilitate a more robust exploration of the search space. Exploitation, on the
other hand, takes place within each neighborhood through the usual genetic operators.
In this paper we we focus on the two-dimensional grid, one of the most commonly used
CGA’s topologies. As illustrated in Figure 1, a local neighborhood is made up of five
individuals, i.e., the individual considered at grid position (x, y), together with its im-
mediate neighbors in north, east, west, and south orientations. This lattice is commonly
known as the Von-Neumann neighborhood.

The pseudo-code of the CGA is outlined in Algorithm 1. Here, we consider
the general optimization problem of finding the global minimum x̂ such that x̂ =
argmin

x
f(x), where x is the set of design variables. In the CGA, each individual under-

goes the standard genetic operators including crossover and mutation. In contrast to
the canonical GA -as mentioned above- an individual can only mate with partner(s) in
the Von-Neumann neighborhood during reproduction. Subsequently, the fitness value
of the offspring is computed. The offspring then replaces the original individual at its
grid location if it results in a more favorable fitness value.

As the bias towards better solutions is handled locally, the resulting lower selection
pressure of the CGA makes it converge at a slower rate than a panmictic GA. For exam-

Evolutionary Computation Volume x, Number x 3



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Algorithm 1 Cellular Genetic Algorithm
1: procedure CELLULARGA
2: pop = Create-Grid((WIDTH ∗HEIGHT ))
3: for x = 1 to WIDTH do
4: for y = 1 to HEIGHT do
5: Initialize pop(x, y)
6: pop(x, y).fitness = Evaluate(pop(x, y))
7: end for
8: end for
9: while (termination condition is not satisfied) do

10: oldpop = pop
11: for x = 1 to WIDTH do
12: for y = 1 to HEIGHT do
13: parent1 = oldpop(x, y)
14: parent2 = Select(Neighbors(x, y))
15: child = Crossover(parent1, parent2)
16: Mutate(child)
17: child.fitness = Evaluate(child)
18: if (child.fitness < oldpop(x, y).fitness) then
19: pop(x, y) = child
20: end if
21: end for
22: end for
23: end while
24: end procedure

4 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Figure 1: Cellular GA neighborhood structure

ple, a parallel CGAs (fine-grained) for flow shop scheduling problems has been shown
to converge slower than a parallel island model GA and to generate better solution
quality (Kohlmorgen et al., 1999). Alba et al. (2002) investigated various population
update policies for CGA and the effect of such policies on the tradeoff between explo-
ration and exploitation during the search process. The effect of grid structure on the
performance of CGA was also studied in (Alba and Dorronsoro, 2005). Across the large
majority of research results on the use of CGA, the ability to reduce the effects of pre-
mature convergence are counterweighted by the fact that this usually leads to a slow
convergence rate for the underlying search process. In this paper we are tackling pre-
cisely this challenge, namely, to demonstrate a mechanism by which both diversity and
fast convergence can be harmonised en route to solving optimization problems that are
computationally demanding.

3 Cellular Memetic Algorithm

In this section, we begin with the description of a canonical CMA. An efficient adaptive
CMA is then proposed for effective selection of suitable candidates in the CMA pop-
ulation to undergo local search improvement in each search generation. By coupling
local search with the usual genetic operators present in a CGA we aim at improving the
convergence speed of the method.

3.1 Canonical Cellular Memetic Algorithm

The pseudo code for a canonical CMA is outlined in Algorithm 2. For the sake of
brevity, we present the canonical CMA as two separate phases. Phase I involves the
CGA and is hence similar to that of Algorithm 1. After phase I, the offspring under-
goes local search. To avoid confusion, it is worth noting that two concepts of locality
(neighborhood) exist in the CMA. Neighborhoods can be defined in the context of pop-
ulation grid structures or that of the solution space. On the one hand, the local im-
provement procedures operate on the search space itself, i.e., around the vicinity of the
incumbent solution. On the other hand, the selection of neighboring individuals takes
place through reference to lattice structure upon which the population is mapped, in
this case, the Von-Neumann neighborhood. Since they refer to a totally different neigh-

Evolutionary Computation Volume x, Number x 5



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

borhood conceptions, individuals which are neighbors in the lattice (i.e. the population
structure) do not necessarily represent neighboring search space points, i.e., they may
very well be far in terms of genotypic, phenotypic and/or fitness distance.

Algorithm 2 Cellular Memetic Algorithm
1: procedure CELLULARMA
2: Initialize-Meme-Pool;
3: pop = Create-Grid((WIDTH ∗HEIGHT ))
4: for x = 1 to WIDTH do
5: for y = 1 to HEIGHT do
6: Initialize pop(x, y)
7: pop(x, y).fitness = Evaluate(pop(x, y))
8: end for
9: end for

10: while (termination condition is not satisfied) do
11: generation = generation + 1
12: oldpop = pop
13: for x = 1 to WIDTH do
14: for y = 1 to HEIGHT do
15: /* Phase I: CGA */
16: parent1 = oldpop(x, y)
17: parent2 = Select(Neighbors(x, y))
18: child = Crossover(parent1, parent2)
19: child = Mutate(child)
20: /* Phase II: Individual Learning */
21: if (generation mod θ = 1) then
22: child = Local-Improvement(child)
23: end if
24: child.fitness = Evaluate(child)
25: if (child.fitness < oldpop(x, y).fitness) then
26: pop(x, y) = child
27: end if
28: end for
29: end for
30: end while
31: end procedure

3.2 Adaptive Cellular Memetic Algorithm

The canonical CMA employs local search on all individuals of the population. While
the canonical model fully exploits all individuals in the population, this is a very com-
putationally intensive and inefficient search process. At the same time, exhaustive lo-
cal search may lead to ineffective search due to premature drop in diversity during
the MA search. Recent study on the effect of local search frequency or probability of
local search, i.e., how many chromosomes to undergo local search in an EA genera-
tion, highlights the need for adaptation of this parameter in order to attain good MA
search performance (Hart, 1994; Deb and Beyer, 2001). In the following subsections,
we study two schemes for selecting the individuals undergoing local search. Based on
the taxonomy in (Ong et al., 2006), both algorithms represent forms of static adaptation

6 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

approach.
To help categorize the new algorithms we propose in relation to other Memetic Al-

gorithms, please note that accordingly to the taxonomy developed in (Ong et al., 2006),
both our methods represent a “static adaptation approach”. In the complementary tax-
onomy described in Krasnogor and Smith (2005), these methods have an index D = 4
as they employ a “coarse grain scheduler” that, using both global and local population
information, allocates local search trials. For more details the reader is referred to the
above cited references.

• Cellular Memetic Algorithm with random selection scheme (CMAR)

The most basic scheme for selecting the subset of chromosomes that will undergo
the improvement procedure is random selection. In the local search phase, chro-
mosomes are randomly selected to undergo local search - this does not adapt but
has the advantage of giving all the chromosomes in the CMA population an equal
chance to undergo improvement.

• Stratified-Adaptive Cellular Memetic Algorithm (ACMA)

An alternative scheme for selecting suitable individuals to undergo local search
during the CMA run is based on the online population statistics. In particular,
adaptation is carried out based on the distribution or diversity measure of the pop-
ulation. The diversity of a GA population may be measured by various means that
can be applied at the genotype, phenotype or fitness level. The reader is referred to
Burke et al. (2002, 2003) for a detailed discussion of these issues with an emphasis
on Genetic Programming but with general application to other EAs.

Our approach maintains appropriate degree of local search and solution diversity
in the evolutionary search based on a fitness uniform selection scheme. The adaptive
local search scheme is outlined in Algorithm 3. In ACMA, we use fitness values to
estimate the level of similarity between individuals and as a basis for applying local
search on different groups of individuals selectively. At each generation, using the fit-
ness range in the population, i.e., the maximum and minimum fitness values of the
current CGA population, the fitness space is divided into α ∗ n number of uniform in-
tervals, where α is a user-predefined percentage value of population undergoing local
refinement while n is the population size, i.e., WIDTH × HEIGHT . This is referred
to as fitnessrange in Algorithm 3.

Subsequently, each individual in the population is then assigned to one of the α∗n
groups based on its fitness value. Henceforth, only one individual from each group
undergoes local search. This individual may be selected either randomly or through
some other selection schemes. In this manner, the likelihood of applying local search
on similar (fitness-wise) individuals is reduced. Here we also consider performing
local search on the elite individual, since it is most likely to be near the best optimum
solution. To avoid redundant local searches, a black-list of past individuals that did not
benefit from local improvement procedure is maintained during the search.

In summary, the number of local searches made in each search generation is con-
strained to a maximum of α ∗ n + 1, i.e., the number of fitness groups plus the elite
individual. Note that the actual number of local searches may differ between two
generations, as it is possible that none of the individuals has a fitness value that falls
under a particular fitness bin. That is, fitness groups may be empty hence no sam-
ple from within that group can be used to perform local search . In this way, ACMA

Evolutionary Computation Volume x, Number x 7



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Algorithm 3 Adaptive Local Search
1: if generation mod θ = 1 then
2: /* Initialization will create α ∗ n empty groups */
3: fitnessrange = (maxfitness−minfitness)/(α ∗ n)
4: if (fitnessrange > ε) then
5: for each individual indv in the current population pop do
6: groupindex = (indv.fitness−minfitness)/fitnessrange
7: assign indv to a group based on the groupindex
8: end for
9: for each non-empty groups g do

10: i = Random(1, size of g)
11: if (g[i] is not in black-list) then
12: childls = Local-Improvement (g[i])
13: if (childls.fitness < g[i].fitness) then
14: g[i] = childls
15: else
16: Add g[i] to black-list
17: end if
18: end if
19: end for
20: else/* fitnessrange < ε */
21: re-initialize the entire population except the elite individuals
22: end if
23: end if

performs exploration through its neighborhood structure while at the same time ex-
ploitation is carried out through local search which, in turn, adapts as a function of
the grouping in fitness space. In the design of memetic algorithms, it is common
knowledge that a good balance between exploitation and exploration is the key to
achieving good search performance. Hence, to maintain good diversity and avoid
premature convergence, random individuals are introduced into the population when-
ever the search exhibits signs of premature convergence. Here, we favor greater ex-
ploration by introducing new members into the population when fitnessrange < ε,
see fitnessrange = (maxfitness − minfitness)/(α ∗ n) in Algorithm 3, since pre-
mature convergence suggests that excessive exploitation might have occurred during
the search process. ε is a user-specific parameter, which denotes some small value.
This means that when the fitness range of values between successive groups is small
enough, individuals have become very similar in the fitness or solution space. There-
fore, new search points are introduced into the next generation to improve the diversity
while the best individual is retained.

Further, we illustrate the selective local search mechanism in the proposed ACMA
using the Rastrigin benchmark test function. The results compiled are shown in Figs 2-
4. In particular, Figure 2 shows a plot of the fitness distribution at 60 generations when
using the proposed ACMA to optimize the 10-D Rastrigin function. With α configured
as 5% and a population size n of 100, the number of fitness groups is thus α ∗ n = 5.
The fitnessrange of each fitness group is then approximately 2.2995. From each group,
one individual is picked randomly to undergo local search. This results in a total of six
local searches made at generation 60, i.e., one local search for each fitness group and

8 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Figure 2: Fitness distribution at generation
60 (minimizing 10D Rastrigin)

Figure 3: Fitness distribution at generation
122 (minimizing 10D Rastrigin)

Figure 4: Fitness distribution at generation
240 (minimizing 10D Rastrigin)

Figure 5: Fitness distribution at generation
266 (minimizing 10D Rastrigin)

another on the elite individual.
At generation 122, it is possible to observe in Figure 3 that some form of conver-

gence is emerging, a sign of possible over-exploitation. The population of individuals
at generation 122 are similar in solution or fitness space, particularly there are many in-
dividuals having similar fitness values in groups 1 and 3. The fitnessrange is now thus
smaller than before, approximately 0.442926. Note that no individuals are assigned to
the group in fitnessrange of [2.440796, 2.883722] or group 4, since none of the individu-
als in the population has a fitness value that falls within this range. The total number of
local searches performed is thus at most five (one on each non-empty fitness grouping
and another on the elite individual). At generation 240, the population diversity can be
observed to have dropped significantly in Figure 4 with most individuals converging at
local optima with fitness levels 0.994959 and 1.98992. There are now two empty groups
and the number of local searches has decreased to at most four. To summarize, Figures
2 - 5 illustrate how ACMA algorithm adapts the amount of exploitation by adapting
the number of local searches throughout its search process. As the search continues,
the fitnessrange shrinks and individuals in the population tend to be very similar to
each other in the fitness space. Here, we configure ε to a very small value of 10−8 in
our illustration. When the condition for fitnessrange < ε is satisfied, new random
individuals are introduced into the population to replace all except the elite individual
in an effort to maintain good diversity and solution quality in the search.

Evolutionary Computation Volume x, Number x 9



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Figure 5 shows the fitness distribution when new random search points are intro-
duced at generation 266, but with the elite individual of fitness 0.99496 preserved in the
population. Note that the number of local searches has been restored back to at most
six and the process repeats until the termination condition is satisfied.

4 Empirical study

In this section, we present a numerical study on CGA, canonical CMA and adaptive
CMAs in optimizing a series of commonly used benchmark functions used in the lit-
erature. The search performance results of a stochastic multi-start local search (label
here as MS-DSCG in short) is also reported as the baseline for which other stochastic
algorithms may be compared. Here, the strategy of Davies, Swann, and Campey with
Gram-Schmidt orthogonalization (DSCG) is used as the local search procedure as it has
been shown, e.g. (Ong and Keane, 2004), that it generates good solution for continuous
domains in which MAs are used. In particular all the metaheuristics implemented here,
namely, the multi-start local search, canonical CMA, CMAR and the ACMA will have
DSCG as their core local searcher.

In the DSCG procedure, the search begins with starting point x(k,i) = x(1,0), where
i and k are the direction and iteration counters, respectively. A line search is conducted
on each independent n dimension along direction set {v(k)} . At the end of each itera-
tion k, a new set of orthogonal search directions, {v(k+1)}, is generated. This process is
repeated until convergence to a local optimum or the allowable computational budget
has elapsed. For the details, the readers are referred to Figure 6 which outlines the main
steps of the DSCG procedure.

In the next subsection, we study the utility of the adaptive local search mechanism
introduced in the CGA and analyze the search performance results obtained by the
algorithms on the benchmark problems.

4.1 Experimental Study

We performed twenty five independent runs of each of Multi-start local search (MS-
DSCG), Cellular GA (CGA), canonical Cellular MA (CMA), Cellular MA with random
selective local search α = 5% (CMAR5), Adaptive Cellular MA with α = 5% (ACMA5),
and Adaptive Cellular MA with α = 10% (ACMA10).

The algorithms are tested on the thirty-dimensional parametric optimization prob-
lems already extensively discussed in the literature (Digalakis and Margaritis, 2001)
and a real-world problem, the Frequency Modulation Sound (FMS) function (Tsutsui
and Fujimoto, 1993). Table 1 tabulates these benchmark test functions with their no-
table characteristics. Our main purpose is to compare the performance of ACMA with
CGA and CMA while the MS-DSCG is considered as the base-line. We present results
for ACMA with α = 5% and 10% to observe the effect of different exploitation level on
search performance.

In the present study, the evolutionary parameters for all the algorithms are config-
ured consistently with population size of 100, bit-flip mutation rate of 0.01, two-point
crossover rate of 0.9 and 32-bit binary encoding for each search variable. In all the
MA variants considered, the local search frequency, labeled as θ in Algorithm 2, is
set to 10 generations, i.e., local search phase is applied for every 10 generations. In
each local search phase, the initial step size, s(0), is configured to 1, while a maximum
computational budget of 300 evaluations for a single individual refinement process is
considered.

10 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Figure 6: The strategy of Davies, Swann, and Campey with Gram-Schmidt orthogonal-
ization (DSCG).

Evolutionary Computation Volume x, Number x 11



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Table 1: Benchmark functions used in the study (epi*: epistasis, mul*: multimodality)
Function Range Characteristics

Epi* Mul*

FSphere =
n∑

i=1

(z2
i ) [−100, 100]30 none none

FElliptic =
n∑

i=1

(106)
i−1
n−1 [−100, 100]30 none none

FSchwefel1.2 =
n∑

i=1

(
i∑

j=1

zj)
2 [−100, 100]30 none none

FAckley(x) = 20 + e− 20e
−0.2

√
1
n

n∑
i=1

x2
i − e

1
n

n∑
i=1

cos(2πxi) [−32, 32]30 weak normal

FRastrigin(x) = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)) [−5.12, 5.12]30 none high

FGriewank(x) = 1 +
n∑

i=1

x2
i /4000−

n∏

i=1

cos(xi/
√

i) [−600, 600]30 weak high

FRosenbrock(x) =

n−1∑

i=1

(100× (xi+1 − x2
i )2 + (1− xi)

2) [−100, 100]30 high weak

FWeierstrass =
n∑

i=1

(

kmax∑

k=0

(ak cos(2πbk(zi + 0.5))))− n

kmax∑

k=0

(ak cos(πbk))[−0.5, 0.5]30 weak high

FFMS(a1, w1, a2, w2, a3, w3) =
100∑

t=0

(y(t)− y0(t))2

y(t) = a1 sin(w1 · t · θ + a2 sin(w2 · t · θ + a3 sin(w3 · t · θ)))
y0(t) = 1.0 sin(5.0 · t · θ + 1.5 sin(4.8 · t · θ + 2.0 sin(4.9 · t · θ)))

θ = 2π/100, ai, wi ∈ [−6.4, 6.35], (i = 1, 2, 3).

[−6.4, 6.35]6 high high

FScaffer =
n∑

i=1

F (zi, zi+1), zn+1 = z1

F (x, y) = 0.5 +
sin2(

√
x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2

[−100, 100]30 none none

12 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

4.2 Results and Analysis

Figures 7-16 present the average convergence search trends of CGA, MS-DSCG, CMA,
CMAR5, ACMA5, and ACMA10 across 50 independent simulation runs on each of the
problems considered, respectively. Each simulation run continued until the global op-
timum is found or a maximum of 10000∗D (300,000 function evaluations in the present
study) is reached, where is D is the problem dimensionality. The statistics of the search
runs, i.e., the final errors with respect to the global optimum upon search termination,
the number of evaluations, etc., are presented in Tables 2-11 to allow more detailed
comparison on the solution quality and efficiency of the algorithms. In particular, if the
algorithm reaches the global optimum (fitness error < 10−8) before the maximum com-
putational budget of 300,000 evaluations elapsed, the number of evaluations incurred
in the search process will be reported. For instance, the best result displayed by CMA
in Table 2 is reported as 0.0 (451). This implies the best run of CMA (across the 50 runs)
is one that successfully converged to a fitness error of < 10−8 from the global optimum
at 451 evaluations.

For the sake of brevity, we present the discussion and analysis of our results di-
vided into two main categories. The first category covers the unimodal problems,
namely, Sphere, Elliptic and Schwefel 1.02 functions. The second category discussed
the results obtained for the multimodal problem sets, in this case, Ackley, Rastrigin,
Griewank, Rosenbrock, Weierstrass, Scaffer and FMS problems.

4.2.1 Unimodal functions (Sphere, Elliptic and Schwefel 1.02)

0 1000 2000 3000 4000 5000
−8

−6

−4

−2

0

2

4

6

8

10

12

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 7: Search traces (average of 50 runs) for minimizing 10D Sphere function.
(Square box indicates that the Global Optimum is found)

We begin first with a discussion on the results obtained for the unimodal prob-
lem set. The search traces of the different algorithms on Sphere and Elliptic functions
are depicted in Figures 7 and 8. While CGA faces slow convergence on high dimen-

Evolutionary Computation Volume x, Number x 13



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

0 2000 4000 6000 8000 10000
−10

−5

0

5

10

15

20

25

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 8: Search traces (average of 50 runs) for minimizing 30D Elliptic function.
(Square box indicates that the Global Optimum is found)

0 0.5 1 1.5 2 2.5 3

x 10
5

−10

−5

0

5

10

15

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 9: Search traces (average of 50 runs) for minimizing 30D Schwefel function.

14 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Table 2: Fitness error values and Success Rate (30 Dimensional Sphere)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.000013 0.000081 0.000037 0.000014 0%
MS-DSCG 0.0 (344) 0.0 (6070) 0.0 (1365) 0.0 (1111) 100%

CMA 0.0 (451) 0.0 (3755) 0.0 (1227) 0.0 (852) 100%
CMAR5 0.0 (443) 0.0 (2862) 0.0 (910) 0.0 (552) 100%
ACMA5 0.0 (435) 0.0 (2857) 0.0 (742) 0.0 (603) 100%

ACMA10 0.0 (429) 0.0 (4345) 0.0 (700) 0.0 (805) 100%

Table 3: Fitness error values and success rate (30 Dimensional Elliptic)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.296993 11.802538 2.094388 2.013883 0%
MS-DSCG 0.0 (344) 0.0 (8191) 0.0 (1688) 0.0 (1686) 100%

CMA 0.0 (442) 0.0 (9753) 0.0 (1645) 0.0 (1494) 100%
CMAR5 0.0 (444) 0.0 (3135) 0.0 (1250) 0.0 (803) 100%
ACMA5 0.0 (448) 0.0 (4454) 0.0 (1675) 0.0 (1139) 100%

ACMA10 0.0 (442) 0.0 (4312) 0.0 (1124) 0.0 (964) 100%

Table 4: Fitness error values and success rate (30 Dimensional Schwefel 1.02)(note that
the best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 1.083250 6.511442 3.507798 1.379640 0%
MS-DSCG 25017.911043 46222.875190 36613.290116 4981.768773 0%

CMA 338.664096 1820.302667 1120.620191 332.701733 0%
CMAR5 0.000302 0.015256 0.004470 0.003089 0%
ACMA5 0.000694 0.084662 0.013748 0.016618 0%
ACMA10 0.017464 3.542390 0.509196 0.548611 0%

Evolutionary Computation Volume x, Number x 15



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

sional problems as expected, the remaining algorithms managed to locate the global
optimum solution, thanks to inclusion of individual learning. The average number of
evaluations reported in Table 2 and 3 highlights that the computational costs incurred
by the CMA variants in converging to the global optimum accurately on Sphere and
Elliptic functions are relatively close. Note that in all the CMA variants considered, the
individual learning phase is conducted immediately after the first search generation.
On the other hand, Sphere and Elliptic problems are unimodal and convex, thus DSCG
is able to converge to the global optimum regardless of the starting point used. This
also explains why the results obtained by a stochastic multistart individual learning is
competitive to those obtained by MA.

In contrast, since the Schwefel function poses a challenge to the DSCG local search,
MS-DSCG which is generates random starting points fails to search on the function
well as shown in Figure 9. It is also observed that CMA does not fare as well as CGA,
suggesting that performing local search on the entire population is inefficient. That also
explains why CMAR5 and ACMA5 fare better than ACMA10.

4.2.2 Multimodal functions

0 0.5 1 1.5 2 2.5 3

x 10
5

−25

−20

−15

−10

−5

0

5

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 10: Search traces (average of 50 runs) for minimizing 30D Ackley function.
(Square box indicates that the Global Optimum is found)

Here, we consider next the set of separable multimodal problems, i.e., functions
imbue with low or no epistasis. Figures 10 - 12 present the search trends of the al-
gorithms on the 30 dimensional Ackley, Rastrigin and Griewank problems which has
increasing level of multimodality. The results indicate that the ACMAs and CMAs had
converged to the global optimum while CGA fails to do so for the same termination
condition, suggesting the DSCG local search synergizes well with the CGA to bring
about search improvements. Since the DSCG local search operates on each dimen-
sion separately (see Figure 6), it functions efficiently on the separable problems. This

16 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−12

−10

−8

−6

−4

−2

0

2

4

6

8

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 11: Search traces (average of 50 runs) for minimizing 30D Rastrigin function.
(Square box indicates that the Global Optimum is found)

0 0.5 1 1.5 2 2.5 3

x 10
5

−25

−20

−15

−10

−5

0

5

10

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 12: Search traces (average of 50 runs) for minimizing 30D Griewank function.
(Square box indicates that the Global Optimum is found)

Evolutionary Computation Volume x, Number x 17



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Table 5: Fitness error values and success rate (30 Dimensional Ackley)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.000819 0.002120 0.001418 0.000325 0%
MS-DSCG 0.064219 2.561123 1.098980 0.672054 0%

CMA 0.0 (124294) 0.0 (124477) 0.0 (124393) 0.0 (32) 100%
CMAR5 0.0 (15462) 0.0 (20294) 0.0 (17699) 0.0 (1243) 100%
ACMA5 0.0 (14775) 0.0 (24435) 0.0 (21027) 0.0 (1846) 100%
ACMA10 0.0 (26780) 0.0 (39853) 0.0 (33909) 0.0 (3074) 100%

Table 6: Fitness error values and success rate (30 Dimensional Rastrigin)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 9.949604 36.813473 19.560903 5.540093 0%
MS-DSCG 0.0 (239) 0.0 (34266) 0.0 (9645) 0.0 (8302) 100%

CMA 0.0 (343) 0.0 (31291) 0.0 (7973) 0.0 (7676) 100%
CMAR5 0.0 (350) 0.0 (5291) 0.0 (2713) 0.0 (1325) 100%
ACMA5 0.0 (336) 0.0 (5291) 0.0 (2511) 0.0 (1111) 100%
ACMA10 0.0 (332) 0.0 (4297) 0.0 (2695) 0.0 (1797) 100%

Table 7: Fitness error values and success rate (30 Dimensional Griewank)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.000020 0.019786 0.004263 0.005972 0%
MS-DSCG 5.792934 35.850984 12.249027 4.521426 0%

CMA 0.0 (62666) 0.0 (101777) 0.0 (84336) 0.0 (12715) 100%
CMAR5 0.0 (8213) 0.0 (35290) 0.0 (14494) 0.0 (5274) 100%
ACMA5 0.0 (7788) 0.0 (32194) 0.0 (15053) 0.0 (4962) 100%
ACMA10 0.0 (12057) 0.0 (34789) 0.0 (20027) 0.0 (6302) 100%

18 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

suggests why the MS-DSCG also managed to find the global optimum on Rastrigin
problem on all the 50 runs.

Further, consistent with the results shown on the unimodal problems, CMAR5,
ACMA5 and ACMA10 again attained superior search performances over the CMA.
Clearly, this is attributed to the introduction of selective local search schemes into the
CMA. To quantify the significance in improvements by the adaptive CMAs, the search
statistics of the algorithms are also summarized in Tables 5-7. It is worth noting that
besides a faster convergence speed, CMAR5, ACMA5 and ACMA10 also exhibit better
search robustness as indicated by the lower standard deviation of the results obtained
across the 50 independent runs.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

2

4

6

8

10

12

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 
CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 13: Search traces (average of 50 runs) for minimizing 30D Rosenbrock function.

Rosenbrock is a multi-modal function plague with strong epistasis. Although its
fitness landscape is not as rugged as the other three previously considered benchmark

Table 8: Fitness error values and success rate (30 Dimensional Rosenbrock)(note that
the best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.100618 80.102006 34.995072 25.813214 0%
MS-DSCG 145.614786 2681.761437 681.762756 390.338469 0%

CMA 0.000089 15.750893 1.436206 2.725633 0%
CMAR5 0.007964 67.471566 7.762101 10.577379 0%
ACMA5 0.000072 16.184286 2.288657 3.677642 0%

ACMA10 0.000466 15.473135 1.230378 2.738209 0%

Evolutionary Computation Volume x, Number x 19



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

problems, the strong interactions between the genes is often deem to make it hard for
many optimization approaches including GA or CGA. This suggests why the algo-
rithms failed to locate the global optimum accurately, i.e., success hit rate of 0% on all
the 50 independent runs (see Figure 13 and Table 8). Nevertheless, the results obtained
highlighted that the inclusion of local search had contributed to improvements in the
search performance of the CGA, i.e., CMA, CMAR5, ACMA5 and ACMA10 produces
improved performance than the CGA. Further, it is observed that CMA and ACMA10
had performed better than CMAR5 and ACMA5, suggesting greater exploitation is
beneficial on the Rosenbrock problem. On the other hand, ACMA5 is observed to be
superior over the CMAR5 further suggests the latter facing difficulties with the strong
epistasis in the problem. Hence a selection scheme with some uniformity such as the
stratified scheme is deem to be more appropriate than a simple random selection.

0 0.5 1 1.5 2 2.5 3

x 10
5

−4

−3

−2

−1

0

1

2

3

4

5

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 14: Search traces (average of 50 runs) for minimizing 30D Weierstrass function.

Table 9: Fitness error values and success rate (30 Dimensional Weierstrass)(note that
the best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.045592 3.530791 0.449901 0.759902 0%
MS-DSCG 35.269832 41.501266 39.144839 1.360618 0%

CMA 0.011849 2.412587 0.333060 0.601024 0%
CMAR5 0.002224 1.973621 0.345337 0.540117 0%
ACMA5 0.002177 0.897336 0.035927 0.161454 0%
ACMA10 0.001824 0.986958 0.097758 0.287558 0%

20 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

The extremely rugged surface of Weierstrass functions is generally a greater chal-
lenge for CMAs than the CGA. The significantly large number of basins reduce severely
the efficacy of CMAs as the local search is easily trapped in the local optima and most
of the computational efforts spent are generally wasted. This suggests why the CMA
which conducts a local refinement on each individual in the CGA population fares
poorly when compared to CMAR5, ACMA5 and ACMA10, for the same computational
budget, see Table 9. It is worth noting that even though CMAR5 is able to achieve
excellent search performance, the simple random selection scheme suffers from poor
robustness as observed in the large standard deviations of the results on the Weier-
strass problem (see Figure 14 and Table 9). In contrast, the ACMAs fare the best on the
Weierstrass problem.

0 0.5 1 1.5 2 2.5 3

x 10
5

−1

−0.5

0

0.5

1

1.5

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 
CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 15: Search traces (average of 50 runs) for minimizing 30D Scaffer function.

On the Scaffer problem, it is observed in Figure 15 and Table 10 that the local search

Table 10: Fitness error values and success rate (30 Dimensional Scaffer)(note that the
best performing algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.253642 1.509344 0.553448 0.297457 0%
MS-DSCG 0.671650 1.840983 1.294955 0.274535 0%

CMA 0.208198 0.783990 0.395896 0.150297 0%
CMAR5 0.077727 1.318264 0.467296 0.263380 0%
ACMA5 0.038864 0.936715 0.430312 0.223992 0%

ACMA10 0.097159 1.276680 0.371344 0.213785 0%

Evolutionary Computation Volume x, Number x 21



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Table 11: Fitness error values and success rate (FMS)(note that the best performing
algorithm is highlighted in bold typeface)

Algorithm Fitness error values and success rate
Best Worst Mean Std Success

CGA 0.000063 25.470558 15.810940 7.312292 0%
MS-DSCG 0.049222 17.229564 6.981543 4.753076 0%

CMA 0.0 (71098) 14.778976 7.192541 5.606119 36%
CMAR5 0.0 (10670) 22.383644 13.097359 7.465197 20%
ACMA5 0.0 (4884) 21.483843 4.168509 6.189833 66%

ACMA10 0.0 (6621) 17.382780 3.679700 5.595474 68%

procedure, i.e., DSCG, does not bring about significant improvement to the search,
since the CGA displays a search trend that is close to those of the CMAs. This sug-
gests why MS-DSCG performs badly on the Scaffer problem. The search performances
of the CMA, CMAR5, ACMA5 and ACMA10, on the other hand, do not differ signif-
icantly. Nevertheless, CMA and ACMA10 appear to fare slightly better than CMAR5
and ACMA5 in terms of solution quality and robustness.

0 0.5 1 1.5 2 2.5 3

x 10
5

1

1.5

2

2.5

3

3.5

Function Evaluation Calls

Fu
nc

tio
n 

Fi
tn

es
s 

(n
at

ur
al

 lo
g)

 

 

CGA
MSDSCG
CMA
CMAR5
ACMA5
ACMA10

Figure 16: Search traces (average of 50 runs) for minimizing FMS function.

Lats but not least, we discuss the results of the search on the multimodal and
highly epistatic FMS problem. Figure 16 and Table 11 indicate that ACMAs outperform
the other counterparts significantly in terms of solution quality (best solution achiev-
able), robustness and success rate. The consistently good performance of the ACMAs
on this highly complex problem further emphasizes the importance of selection local
search in CMAs.

22 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

In summary, it is now widely accepted that synergy between global and local
search can bring about improved search performance. Nevertheless, our study has
shown that a good balance through global exploration and local exploitation represents
a crucial factor to achieving high and robust quality solutions efficiently. Exhaustive
local search in CMA may lead to ineffective search due to the inefficient use of compu-
tational resources and premature fall in diversity during the search. On the other hand,
random selection of individuals for local improvement may affect the robustness of the
search. In such case, a diversity-based dynamic adaptive scheme such as the stratified
scheme proposed would be more appropriate.

4.3 Cellular MAs with Comparison to Other Evolutionary and Memetic
Approaches

In the following section, we present a comparison with other advanced evolutionary
algorithms using the same set of benchmark problems studied in section 4.1. ACMA5
and ACMA10 is compared to the Orthogonal GA (OGA/Q) (Leung and Wang, 2001)
and Hybrid Taguchi-Genetic Algorithm Tsai et al. (2004) on the 30D Sphere, Ackley,
Rastrigin and Griewank. Figure 17 reports the number of function evaluation calls
incurred by each algorithm in converging to a fitness error of 10−8 on the benchmark
problems. The detailed statistical comparison between ACMA5 and the two algorithms
are summarized in Tables 12 and 13. It is noted that ACMA5 and ACMA10 outperform
the OGA/Q significantly at 99% confidence level on all the benchmark problems. At
the same time, ACMA5 and ACMA10 also outperform HTGA on all the problems con-
sidered significantly, except the Ackley function.

Figure 17: Number of function evaluations used by different algorithms in solving the
30D benchmark functions.

Evolutionary Computation Volume x, Number x 23



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Table 12: Statistic test on comparing ACMA5 vs. OGA/Q (Null hypothesis: ACMA5
and OGA/Q incur equal number of evaluations vs. alternative hypothesis: ACMA5
and OGA/Q incur different number of evaluations to reach to the global optimum)

Problems ACMA5 OGA/Q t-value p-value Conclusion
Sphere 742± 603 112559 −1311.2 5.00e−113 ACMA5 is better
Ackley 21027± 1846 112421 −350.1 6.25e−85 ACMA5 is better
Rastrigin 2511± 1111 224710 −1414.2 1.235e−114 ACMA5 is better
Griewank 15053± 4962 134000 −169.1 1.65e−69 ACMA5 is better

Table 13: Statistic test on comparing ACMA5 vs. HTGA (Null hypothesis: ACMA5
and HTGA incur equal number of evaluations vs. alternative hypothesis: ACMA5 and
HTGA incur different number of evaluations to reach to the global optimum)

Problems ACMA5 HTGA t-value p-value Conclusion
Sphere 742± 603 20844 −235.7 1.61e−76 ACMA5 is better
Ackley 21027± 1846 16632 16.8 2.60e−22 HTGA is better
Rastrigin 2511± 1111 16267 −87.6 1.67e−55 ACMA5 is better
Griewank 15053± 4962 20999 −8.5 3.64e−11 ACMA5 is better

5 Conclusion

Previous studies have shown that the Cellular GA possesses better population diversity
and exploration capacity than the standard GA (Kohlmorgen et al., 1999; Alba and
Troya, 2002). The impact of reducing the effect of premature convergence however
raises the issue of slow convergence rate in CGAs. We have identified this as a core
challenge for CGA especially when used in solving optimization problems that are
computationally demanding. Since it is common knowledge that local search methods
can locate local optima effectively and efficiently, it can potentially complement the
CGA as a means of increasing its exploitation ability.

In this paper, we have analyzed the performance of the cellular GA against the
canonical cellular MA on a series of benchmark problems representing classes of uni-
modal, multimodal test functions having different level of epistasis. Empirical results
on the test functions show that ACMA locates global optimum more often than the
CGA; generating better success hit rates and giving the best optimum solution with
lower computational effort, i.e., a lower minimum error threshold and a smaller num-
ber of function evaluations. However, due to the aggressive exploitative nature of the
cellular MA, it is more susceptible to getting stuck in local optima than the cellular GA.

To achieve a desirable level of performance in a search algorithm, neither exploita-
tion nor exploration should dominate. We have shown that adaptive cellular MAs (AC-
MAs) with selective local search mechanism can balance the degree of exploitation and
exploration in the search under limited computational budget. Empirical study shows
that the proposed ACMA significantly outperforms the Cellular GA, canonical Cellular
MA and the Cellular MA with random selection on all the benchmark problems tested,
in terms of solution quality, search efficiency and robustness.

24 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Acknowledgement

This work has been funded in part under the A*STAR SERC Grant No. 052 015 0024
administered through the National Grid Office. NK acknowledges the EPSRC grants
EP/E017215/1, EP/D021847/1 and EP/D061571/1. The authors would also like to
thank W. Tjiawi for his help on the present work.

References
Alba, E. and Dorronsoro, B. (2005). The exploration/exploitation tradeoff in dynamic cellular

evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 9(2):126–142.

Alba, E., Dorronsoro, B., and Alfonso, H. (2005). Cellular Memetic Algorithms. Journal of Com-
puter Science & Technology.

Alba, E., Giacobini, M., Tomassini, M., and Romero, S. (2002). Comparing synchronous and asyn-
chronous cellular genetic algorithms. Parallel Problem Solving from Nature-PPSN VII, 2439:601–
610.

Alba, E. and Troya, J. M. (2002). Improving flexibility and efficiency by adding parallelism to
genetic algorithms. Statistics and Computing, 12(2):91–114.

Baluja, S. (1993). Structure and performance of fine-grain parallelism in genetic search. Proceeding
of the Fifth International Conference on Genetic Algorithms, pages 155–162.

Bradwell, R., Brown, K., Cantu-Paz, E., and Punch, B. (1999). Parallel asynchronous memetic
algorithms. Evolutionary Computation, pages 157–159.

Burke, E., Cowling, P., De Causmaecker, P., and Berghe, G. (2001). A Memetic Approach to the
Nurse Rostering Problem. Applied Intelligence, 15(3):199–214.

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2002). Advanced population diversity
measures in genetic programming. In Merelo-Guervs, J., Adamidis, P., Beyer, H., Fernndez-
Villacaas, J., and Schwefel, H., editors, 7th International Conference Parallel Problem Solving from
Nature, volume 2439 of Springer Lecture Notes in Computer Science, pages 341–350, Granada,
Spain. PPSN, Springer Berlin / Heidelberg. ISBN 3-540-44139-5.

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2003). Is increased diversity beneficial
in genetic programming: An analysis of the effects on fitness. In IEEE Congress on Evolutionary
Computation, pages 1398–1405. CEC, IEEE.

Deb, K. and Beyer, H. (2001). Self-Adaptive Genetic Algorithms with Simulated Binary
Crossover. Evolutionary Computation, 9(2):197–221.

Digalakis, J. G. and Margaritis, K. G. (2000). A performance comparison of parallel genetic and
memetic algorithms using MPI. IntRep03, University of Macedonia, Parallel Distributed Processing
Laboratory, Thessaloniki, Greece.

Digalakis, J. G. and Margaritis, K. G. (2001). On benchmarking functions for genetic algorithms.
Intern. J. Computer Math., 77(4):481–506.

Folino, G., Pizzuti, C., and Spezzano, G. (1998). Combining cellular genetic algorithms and
local search for solving satisfiability problems. Tenth IEEE International Conference on Tools with
Artificial Intelligence, 1998., pages 192–198.

Goldberg, D. and Voessner, S. (1999). Optimizing Global-Local Search Hybrids. Urbana, 51:61801.

Hart, W., Krasnogor, N., and Smith, J. (2004a). Editorial introduction, special issue on memetic
algorithms. Evolutionary Computation, 12(3):v–vi.

Hart, W., Krasnogor, N., and Smith, J. (2004b). Recent advances in memetic algorithms, volume
166 of Studies in Fuzzyness and Soft Computing. Springer Berlin Heidelberg New York. ISBN
3-540-22904-3.

Evolutionary Computation Volume x, Number x 25



Q. H. Nguyen, Y. S. Ong, M. H. Lim and N. Krasnogor

Hart, W. E. (1994). Adaptive Global Optimization with Local Search. PhD thesis, University of Cali-
fornia, San Diego.

Hasan, S., Sarker, R., Essam, D., and Cornforth, D. (2009). Memetic algorithms for solving job-
shop scheduling problems. Memetic Computing, 1(1):69–83.

Houck, C., Joines, J., Kay, M., and Wilson, J. (1997). Empirical Investigation of the Benefits of
Partial Lamarckianism. Evolutionary Computation, 5(1):31–60.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003). Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions
on Evolutionary Computation, 7(2):204–223.

Kohlmorgen, U., Schmeck, H., and Haase, K. (1999). Experiences with fine-grained parallel ge-
netic algorithms. Annals of Operations Research, 90:203–219.

Krasnogor, N. and Smith, J. (2000). A memetic algorithm with self-adaptive local search: TSP as
a case study. Proceeding of the Genetic and Evolutionary Computation Conference (GECCO), pages
987–994.

Krasnogor, N. and Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxon-
omy, and design issues. IEEE Transactions on Evolutionary Computation, 9(5):474–488.

Krasnogor, N. and Smith, J. (2008). Memetic algorithms: The polynomial local search complexity
theory perspective. Journal of Mathematical Modelling and Algorithms, 7(1):3–24.

Leung, Y. W. and Wang, Y. (2001). An orthogonal genetic algorithm with quantization for glob-
alnumerical optimization. IEEE Transactions on Evolutionary Computation, 5(1):41–53.

Lim, M. H. and Xu, Y. L. (2005). Application of hybrid genetic algorithm in supply chain man-
agement. Special issue on Multi-Objective Evolution: Theory and Applications, International Journal
of Computers, Systems, and Signals, 6(1).

Martin, W. N., Lienig, J., and Cohoon, J. P. (1997). Island (migration) models: evolutionary algo-
rithms based on punctuated equilibria. Handbook of Evolutionary Computation, 6:3.

Muhlenbein, H., Schomisch, M., and Born, J. (1991). The Parallel Genetic Algorithm as a Function
Optimizer. Proceeding of the Fourth International Conference on Genetic Algorithms, pages 271–78.

Ong, Y., Lim, M., Neri, F., and Ishibuchi, H. (2008). Special issue on emerging trends in soft
computing: memetic algorithms. Soft Computing-A Fusion of Foundations, Methodologies and
Applications, pages 739–740.

Ong, Y. S. and Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation, 8(2):99–110.

Ong, Y. S., Krasnogor, N., and Ishibuchi, H. (2007). Special Issue on Memetic Algorithms. IEEE
Transactions on Systems, Man and Cybernetics - Part B, 37(1):2–5.

Ong, Y. S., Lim, M. H., Zhu, N., and Wong, K. W. (2006). Classification of Adaptive Memetic
Algorithms: A Comparative Study. IEEE Transactions on Systems, Man and Cybernetics – Part
B., 36(1):141.

Pettey, C. (1997). Diffusion (cellular) models. Handbook of Evolutionary Computation. IOP Publishing.

Spiessens, P. and Manderick, B. (1991). A massively parallel genetic algorithm: Implementation
and rst analysis. Proceeding of the Fourth International Conference on Genetic Algorithms, San
Diego, CA, pages 279–287.

Tang, J., Lim, M. H., and Ong, Y. S. (Dec 2006). Parallel Memetic Algorithm with Selective Local
Search for Large Scale Quadratic Assignment. Intl. Journal of Innovative Computing, Information
and Control, 2(6):1399–1416.

26 Evolutionary Computation Volume x, Number x



Adaptive Cellular Memetic Algorithms

Tang, J., Lim, M. H., and Ong, Y. S. (July 2007). Diversity-Adaptive Parallel Memetic Algo-
rithm for Solving Large Scale Combinatorial Optimization Problems. Soft Computing Journal,
11(9):873–888.

Tsai, J. T., Liu, T. K., and Chou, J. H. (2004). Hybrid Taguchi-genetic algorithm for global numer-
ical optimization. IEEE Transactions on Evolutionary Computation, 8(4):365–377.

Tsutsui, S. and Fujimoto, Y. (1993). Forking Genetic Algorithm with Blocking and Shrinking
Modes (fGA). Proceeding of the 5th International Conference on Genetic Algorithms table of contents,
pages 206–215.

Yu, X., Tang, K., Chen, T., and Yao, X. (2009). Empirical analysis of evolutionary algorithms with
immigrants schemes for dynamic optimization. Memetic Computing, 1(1):3–24.

Evolutionary Computation Volume x, Number x 27


