
Classification-assisted Memetic Algorithms for
Equality-constrained Optimization Problems

S.D. Handoko, C.K. Kwoh, and Y.S. Ong

School of Computer Engineering,
Nanyang Technological University, Singapore 639798

danielhandoko@pmail.ntu.edu.sg

Abstract. Regressions has successfully been incorporated into memetic
algorithm (MA) to build surrogate models for the objective or constraint
landscape of optimization problems. This helps to alleviate the needs for
expensive fitness function evaluations by performing local refinements on
the approximated landscape. Classifications can alternatively be used to
assist MA on the choice of individuals that would experience refinements.
Support-vector-assisted MA were recently proposed to alleviate needs for
function evaluations in the inequality-constrained optimization problems
by distinguishing regions of feasible solutions from those of the infeasible
ones based on some past solutions such that search efforts can be focussed
on some potential regions only. For problems having equality constraints,
however, the feasible space would obviously be extremely small. It is thus
extremely difficult for the global search component of the MA to produce
feasible solutions. Hence, the classification of feasible and infeasible space
would become ineffective. In this paper, a novel strategy to overcome such
limitation is proposed, particularly for problems having one and only one
equality constraint. The raw constraint value of an individual, instead of
its feasibility class, is utilized in this work.

1 Introduction

Real-world optimization problems are often constrained. Generally, they can be
formulated as finding some vector x of n real-valued independent variables that
minimizes

f(x) (1)

subject to

g(x) ≤ 0 (2)
h(x) = 0 (3)

where x ∈ <n is often referred to as the solution, while f : <n → < the objective,
whereas g : <n → <ng and h : <n → <nh the inequality and equality constraints,
respectively. There may also be bound constraints of the form x` ≤ x ≤ xu with
x` being the lower and xu being the upper bound.

In addition, real-world problems often involve expensive computation of their
objective/constraint functions. Potential energy minimization in computational
molecular chemistry or biology, for example, demands minutes to hours in each
function evaluation depending on the size of the molecule as well as the fidelity
of the model being used. The number of function evaluations required to solve
problems in this category is therefore a significant issue.

One method to deal with such situation when only the inequality constraints
are present were proposed in [1]. Five benchmark problems experimented with,
all of which have sufficiently reasonable ratio of the feasible to the whole search
space, were solved within less amount of function evaluations using the proposed
method. Dealing with the equality-constrained optimization problems, however,
extremely small ratio of the feasible to the whole search space poses challenges
to the global search algorithm to find a feasible solution, deeming the proposed
method that separates the regions of feasible from infeasible solutions unsuited.
In this paper, a novel strategy designed for the equality-constrained problems is
proposed with a primary focus on problems with single equality constraint only.

2 Literature Review

2.1 Deterministic Algorithms

Methods of feasible directions is a class of deterministic algorithms that proceed
from one feasible solution to another in order to solve constrained optimization
problems [2]. Zoutendijk algorithm [3] and sequential linear programming (SLP)
approaches [4][5][6] employ first-order approximation to both the objective and
the constraints and are consequently prone to slow convergence. By employing
second-order functional approximation, sequential quadratic programming (SQP)
technique [7] enjoys quadratic rate of convergence and is the state-of-the-art of
nonlinear programming solvers [8].

The following quadratic program is solved for direction d at the i-th major
iteration of the SQP.

f(x(i)) +∇f(x(i))T d +
1
2
dT∇2L(x(i))d (4)

subject to

gj(x(i)) +∇gj(x(i))T d ≤ 0 j = 1, . . . , ng (5)

hj(x(i)) +∇hj(x(i))T d = 0 j = 1, . . . , nh (6)

where

∇2L(x(i)) = ∇2f(x(i)) +
ng∑

i=1

µ
(i)
j ∇2gj(x(i)) +

nh∑

i=1

ν
(i)
j ∇2hj(x(i)) (7)

Throughout this work, the gradient vectors are assumed to be readily available
while the Hessian matrices are updated using the quasi-Newton approximation.

Although quadratic rate of convergence is achievable, it is well known that
deterministic optimization algorithms may not converge to the global optimum.
Constrained optimization problems with nonlinear objective or constraints are
in general intractable. It is impossible to design a deterministic algorithm that
would outperform the exhaustive search in assuring global convergence [9].

2.2 Randomized Algorithms

Genetic algorithm (GA) [10] is a randomized algorithm with ability to overcome
the drawback of deterministic optimization algorithms. Belonging to the class of
evolutionary computing, GA is motivated by the natural inheritance of genes and
the natural selection in the course of biological evolution [11] with the crossover,
the mutation, and the survival-of-the-fittest being at its very heart. The simplest
form of the algorithm assumes only one population evolved from one generation
to the next. In dealing with constraints, the ranking scheme in [12] is often used.
Summarized in the following three points, it is employed throughout this work.

– The feasible solution is preferred to the infeasible one.
– Between two feasible solutions, the one having better objective is preferred.
– Between two infeasible solutions, the one having less amount of violation to

the constraints is preferred.

Research works on constrained evolutionary computing over the last decade
include Homomorphous Mapping [13], Stochastic Ranking [14], the ASCHEA
[15], Simple Multimembered Evolution Strategy (SMES) [16] that is known to
have used the smallest number of fitness function evaluations (FFEs) so far, and
some others [17][18][19][20]. Even though specially-designed operators accelerate
the search for the global optimum to certain extent, it is a consensus that GA
may suffer from excessively slow convergence trying to locate the optimum with
sufficient precision because of its failure in exploiting local information [21].

2.3 Hybrid Algorithms

When hybridizing optimization methods, two central yet competing goals meet:
exploration and exploitation [22]. The exploration provides reliable estimates of
the global optimum by surveying the search space using global search methods,
which are accommodated by the randomized algorithms. The exploitation then
enhances each estimate by focussing the search efforts on its local neighborhood
in order to produce a sufficiently accurate global optimum. This is accomplished
using local search methods, which are facilitated by the deterministic algorithms.
Motivated by Dawkins’ notion of meme [23] (unit of cultural evolution capable of
local refinements), a memetic algorithm (MA) exhibits this particular behavior.
As the simplest variant, the simple MA simply interleaves global and local search
methods one after the other. When compared to its conventional counterparts,
the simple MA performs better by converging to a high quality global optimum
and searching more efficiently [21].

Local refinements for each individual in the population, unfortunately, need
not necessarily be the most efficient strategy. Local refinements of solutions at
different locations may end with the same local optimum. Local search methods,
such as the SQP, are known to converge quickly only when initialized with an
approximate solution close enough to the optimal solution. Thus, the choice of
individuals that should undergo local refinements becomes a critical issue in MA.

3 Proposed Approach

3.1 The Global Optimum

The optimization problem constrained by one and only one equality constraint
always has global optimum situated at some particular location along the curve
defined by h(x) = 0. This curve is the feasible space of the problem. Illustrated
in Fig. 1 is the constraint space of benchmark problem g11—the objective and
constraint functions of which can be found in [24]. The solid curve represents
the feasible space and the dot the global optimum of the problem. For this type
of problems, the feasible space sets the solutions with positive constraint values
apart from those with negative ones.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

Fig. 1. Constraint Space of Benchmark Problem g11
◦: constraint space where h(x) < 0; +: constraint space where h(x) > 0

It is understood that local search methods, such as the SQP, converge quickly
to local optimum when they are initialized with an approximate solution that is
close enough to the optimal solution [2]. Because one of the possibly many local
optima must be the global optimum, focussing the search efforts on the regions
nearby the feasible space will definitely increase the odds of being more efficient
in locating the global optimum of the problem. This is achieved in this work by
utilizing one fact that the feasible space of an optimization problem with single
equality constraint is the zero-crossing of the constraint value.

3.2 The Neighborhood

Similar to [1], neighborhood N of the individual x is defined as the collection of
k nearest solutions (to the individual) obtained from database of past solutions.
The Euclidean distance in (8) is used throughout as a sparsity measure between
any two n-dimensional solutions p and q.

dpq =

√√√√
n∑

i=1

(qi − pi)2 (8)

For the k neighbors are infallibly past solutions, no additional FFE is necessary
to know quantities associated with these solutions. Freely accessible information
include the constraint values based on which two classes can be derived. Should
a neighbor and its corresponding class be represented as xi and yi, respectively,
N = {(xi, yi) : i = 1, 2, . . . , k} = {(x1, y1), . . . , (xk, yk)} defines the information
contained within this neighborhood with

yi = sign(h(xi)) =





+1 h(xi) > 0

−1 h(xi) < 0
(9)

Different from [1], the neighbors in this work are restricted to past solutions xi

for which h(xi) 6= 0. This means all the neighbors shall be infeasible—which is
indeed desirable as the regions surrounding the feasible space must be infeasible.
By making use of the signs of the constraint values of an individual’s neighbors,
it is demanded that the individual relative position can be predicted such that
local search will only be executed if the individual is nearby the feasible space
of the optimization problem.

Mixed Neighborhood This type of neighborhood consists of members having
positive and negative constraint values. Neighborhood of this type is absolutely
of significant interest and importance. A two-class classification subproblem can
be formulated out of this scenario. The decision boundary produced as the result
of solving the classification subproblem does not only distinguish the regions of
positive constraint values from those of the negative ones, but also approximates
the feasible space of the optimization problem locally. Support Vector Machine
(SVM) [25] will be described in the next subsection to serve this purpose.

Positive-only Neighborhood A positive-only neighborhood, as indicated by
its name, consists of members having only positive constraint values. This is of
little or no importance as there is no clue about the feasible space of the problem
that can be deduced from this type of neighborhood.

Negative-only Neighborhood A negative-only neighborhood, as revealed by
its name, consists of members having only negative constraint values. Similarly,
no clue about the feasible space of the problem can be mined from this type of
neighborhood, making it of little or no significance.

3.3 The Support Vector Machine (SVM)

SVM is a machine-learning technique initially proposed as a two-class classifier.
It is well-known as being characterized by its ability to maximize the geometric
margin between the two classes, and simultaneously, minimize the classification
error. Upon provision of k training data instances (xi, yi) where yi ∈ {−1,+1}
for all i = 1, 2, . . . , k, the SVM needs to maximize the quadratic program below.

k∑

i=1

αi − 1
2

k∑

i=1

k∑

j=1

αiαjyiyj(xi · xj) (10)

subject to

k∑

i=1

yiαi = 0 (11)

∀i αi ≥ 0 (12)

Collection of training data instances having α > 0 defines the support vectors.
Every one of them is situated at the decision surface D(x) = +1 or D(x) = −1
depending on which class it belongs to. Weight vector w and bias w0 are hence
computed using (13) and (14) in which SV is the set of support vectors indices.

w =
k∑

i=1

αiyixi =
∑

i∈SV

αiyixi (13)

w0 =
1

|SV |
∑

i∈SV


yi −

k∑

j=1

αjyj(xj · xi)


 (14)

Upon encountering a mixed neighborhood, the SVM needs training based on
the k instances of N . Subsequently, the SVM can be used to predict the relative
position of the individual x with respect to neighborhood N , producing one of
the following three possible outcomes.

1. |D(x)| ≤ +1
The individual x has been estimated to be located nearby the feasible space.
With no neighbors found within this region, furthermore, local refinement is
obviously necessary to exploit this seemingly unexplored search space.

2. D(x) > +1
Depending on the actual value of D(x), the individual x may be close enough
to the feasible space. With neighbors around, there may not be further need
to exploit this previously explored region of the search space.

3. D(x) < −1
Similar to case 2, the individual x may be located close to the feasible space
depending on the value of D(x). With neighbors around, no exploitation of
this previously explored search space would be necessary.

3.4 The Complete Algorithm

Algorithm 1 presents the complete algorithm of the proposed approach in pseudo-
code form. An important point worth noting is that the size of the neighborhood
is recommended to be some multiple of the dimensionality of the problem being
solved such that it would be large enough to capture important information yet
small enough to ensure locality and allow the SVM to perform reasonably fast as
its complexity depends largely on the number of training data instances. While
the cost of running the SVM may not be inexpensive, the efforts required for
evaluating the objective and constraint functions may be magnitudes greater
for many practical optimization problems. Thus, the additional budget incurred
by the SVM will become insignificant when dealing with some computationally-
expensive optimization problems.

Algorithm 1 Classification-assisted MA (CaMA)
Initialize a population
Evaluate the population
while no stopping criteria have been fulfilled do

for each individual x in the population do
if past solutions are of negative only or positive only constraint values then

Refine x using local search
else

if neighborhood N of x is a mixed neighborhood then
Train SVM based on N to obtain decision function D(·)
if |D(x)| ≤ 1 then

Refine x using local search
end if

end if
end if

end for
Evolve the population through crossover, mutation, and elitism
Evaluate the population

end while

4 Results and Discussions

Using GA as the global and SQP as the local search method, an empirical study
was carried out with a population size of 100 individuals and a maximum of 2n
fitness function evaluations (FFEs) for each individual refinement with n being
the dimensionality of the problem. Experimented with are benchmark problem
g03 for n = 2, . . . , 10 and g11, the objective and constraint functions of which
can be found in [24]. These are the only two benchmark problems having single
equality constraints among the 24 problems in [24]. When the proposed method
was used, a neighborhood size of 2n was assumed.

Table 1. Number of FFEs Required by SMA and CaMA to Locate the Global Optimum

Problem Statistics SMA CaMA Saving

best 284 124
g03 (n = 2) average 362 152 58.01%

worst 471 187

best 935 220
g03 (n = 3) average 1, 116 307 72.49%

worst 1, 244 411

best 1, 543 284
g03 (n = 4) average 1, 681 434 74.18%

worst 1, 812 552

best 1, 842 258
g03 (n = 5) average 2, 083 394 81.08%

worst 2, 258 536

best 2, 212 228
g03 (n = 6) average 2, 389 337 85.89%

worst 2, 639 642

best 2, 499 148
g03 (n = 7) average 2, 714 407 85.00%

worst 2, 955 2, 763

best 2, 763 180
g03 (n = 8) average 3, 572 1, 175 67.11%

worst 5, 747 3, 499

best 3, 001 157
g03 (n = 9) average 4, 330 2, 351 45.70%

worst 6, 257 4, 441

best 3, 429 401
g03 (n = 10) average 5, 539 2, 945 46.83%

worst 6, 477 5, 788

best 523 116
g11 (n = 2) average 606 154 74.59%

worst 712 225

Table 1 tabulates the performance of 30 independent runs of the simple MA
(SMA) as well as the classification-assisted MA (CaMA) proposed in this paper.
As the simplest variant of MA, the simple MA simply interleaves the global with
the local search methods one after the other. In other words, each individual in
the population would experience local refinements in the context of simple MA.
The percentage of saving achievable by the CaMA with respect to the SMA on
the average is then calculated as follows.

saving =
#FFEs(SMA) −#FFEs(CaMA)

#FFEs(SMA)
× 100% (15)

It is clear from the table that the CaMA consistently outperforms the SMA
in the best, worst, and average cases. With average savings ranging from about
45% to 85%, the CaMA shall undoubtedly bring great advantage when solving
computationally-expensive optimization problems. For this category of problems,
reductions of several hundreds to several thousands of FFEs as exhibited over
the benchmark problems could easily translate to savings of days to months of
computational time. All these are made possible as search efforts were focussed
around the regions that surround the feasible space of the optimization problems,
thanks to the classification algorithms, such as the SVM, that enable prediction
of local feasible space of the problems. As unnecessary refinements initiated with
solutions relatively far away from the feasible space are eliminated, less number
of FFEs are required in locating the global optimum of the problems.

5 Conclusion

Raw constraint values—rather than feasibility classes—are utilized in this work
to focus search efforts on the regions that surround the minute feasible space of
optimization problems with single equality constraint. Savings of up to 85% are
achievable in term of the number of fitness function evaluations needed to solve
benchmark problem g03 with dimensionality varied from 2 to 10 as well as g11.
In the optimization of computationally-expensive problems, such amount could
bring significant time reduction. Thus, generalization to problems with multiple
equality constraints and possibly some inequality constraints shall be addressed
in immediate future.

References

1. Handoko, S.D., et. al., ”Using Classification for Constrained Memetic Algorithm:
A New Paradigm,” in Proceedings of the 2008 IEEE International Conference on
Systems, Man and Cybernetics, 2008.

2. Bazaraa, M.S., H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory
and Algorithms, Wiley-Interscience, 2006.

3. Zoutendijk, G., Methods of Feasible Directions, Elsevier, 1960.
4. Baker, T.E. and R. Ventker, ”Successive Linear Programming in Refinery Logistic

Models,” presented at the ORSA/TIMS Joint National Meeting, 1980.
5. Baker, T.E. and L.S. Lasdon, ”Successive Linear Programming at Exxon,” Man-

agement Science, 31(3), pp. 264–274, 1985.
6. Zhang, J.Z., N.H. Kim, and L.S. Lasdon, ”An Improved Successive Linear Pro-

gramming Algorithm,” Management Science, 31(10), pp. 1312–1331, 1985.
7. Wilson, R.B., ”A Simplicial Algorithm for Convex Programming,” Ph.D. Thesis,

Harvard University, 1963.
8. Schittkowski, K., ”NLPQL: A FORTRAN Subroutine Solving Constrained Non-

linear Programming Problems,” Annals of Operations Research, 5(2), pp. 485–500,
1986.

9. Wright, S.J., ”Nonlinear and Semidefinite Programming,” in Proceedings of Sym-
posia in Applied Mathematics, 61, pp. 115–138, 2004.

10. Holland, J.H., Adaptation in Natural and Artificial Systems, The University of
Michigan Press, 1975.

11. Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preser-
vation of Favoured Races in the Struggle for Life, John Murray, 1859.

12. Deb, K., ”An Efficient Constraint Handling Method for Genetic Algorithms,” Com-
puter Methods in Applied Mechanics and Engineering, 186(2–4), pp. 311–338, 2000.

13. Koziel, S. and Z. Michalewicz, ”Evolutionary Algorithms, Homomorphous Map-
pings, and Constrained Parameter Optimization,” Evolutionary Computation, 7(1),
pp. 19–44, 1999.

14. Runarsson, T.P. and Y. Xin, ”Stochastic Ranking for Constrained Evolutionary
Optimization,” IEEE Transactions on Evolutionary Computation, 4(3), pp. 284–
294, 2000.

15. Hamida, S.B. and M. Schoenauer, ”ASCHEA: New Results Using Adaptive Segre-
gational Constraint Handling,” in Proceedings of the 2002 Congress on Evolution-
ary Computation, pp. 884–889, 2002.

16. Mezura-Montes, E. and C.A.C. Coello, ”A Simple Multi-Membered Evolution
Strategy to Solve Constrained Optimization Problems,” IEEE Transactions on
Evolutionary Computation, 9(1), pp. 1–17, 2005.

17. Barbosa, H.J.C. and A.C.C. Lemonge, ”A New Adaptive Penalty Scheme for Ge-
netic Algorithms,” Information Science, 156(3–4), pp. 215–251, 2003.

18. Farmani, R. and J.A. Wright, ”Self-Adaptive Fitness Formulation for Constrained
Optimization,” IEEE Transactions on Evolutionary Computation, 7(5), pp. 445–
455, 2003.

19. Chootinan, P. and A. Chen, ”Constraint Handling in Genetic Algorithms Using
a Gradient-based Repair Method,” Computers and Operation Research, 33(8), pp.
2263–2281, 2006.

20. Elfeky, E.Z., R.A. Sarker, and D.L. Essam, ”A Simple Ranking and Selection for
Constrained Evolutionary Optimization,” in Lecture Notes in Computer Science,
4247, Springer-Verlag, 2006.

21. Tang, J., M.H. Lim, and Y.S. Ong, ”Diversity-Adaptive Parallel Memetic Algo-
rithm for Solving Large Scale Combinatorial Optimization Problems,” Soft Com-
puting: A Fusion of Foundations, Methodologies, and Applications, 11(9), pp. 873–
888, 2007.

22. Torn, A. and A. Zilinskas, Global Optimization, Springer-Verlag, 1989.
23. Dawkins, R., The Selfish Gene, Oxford University Press, 1976.
24. Liang, J.J., et al., Problem Definitions and Evaluation Criteria for the CEC 2006

Special Session on Constrained Real-Parameter Optimization, Technical Report,
2006.

25. Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, 1995.

