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Abstract-First order saddle points have important 

applications in different fields of science and engineering. 
Some of their interesting applications include estimation of 
chemical reaction rate, image segmentation, path-planning and 
robotics navigation. Finding such points using evolutionary 
algorithms is a field that remains yet to be well investigated. In 
this paper, we present an evolutionary algorithm that is 
designed for finding multiple saddle points. In contrast to 
earlier work [1], we propose a new fitness function that favors 
1st order saddle points or transition states. In particular, a 
valley adaptive clearing multi-modal evolutionary optimization 
approach is proposed to locate and archive multiple solutions 
by directing the search towards unexplored regions of the 
search space [2]. Experimental results on benchmark functions 
and the Lennard Jones Potential are presented to demonstrate 
the efficacy of the proposed algorithm in locating multiple 1st 
order saddle points. 

Key Words: First orders saddle points, Evolutionary 
Optimization, Robotics navagation, and  Transition states 

I.  INTRODUCTION  
Finding First order saddle points are important for 

robotics scholars and professionals. First order saddle 
points, for example, plays an important role in robotic 
navigation. In [3], first order saddle points has been used as 
a high accurate approach for identifying x-junction from 
images captured by robotic visual sensors. Building 
roadmaps in visual models, also, represent another 
important general-purpose application of first order saddle 
points in computer science and robotics [4]. The roadmaps 
could be used, for example, in estimating human pose 
captured from monocular images and identifying the 
minimum energy path which is important for path-planning 
and robotic navigation [5].  

Finding first order saddle points is also important for 
many other areas in science such as economy [6], chemistry 
[7], and biology [8]. In theoretical chemistry, for example, 
geometry optimization of chemical structures, especially 
transition structures, is important. Transition structures or 1st 
order saddle points, unlike other stable structures, are 
energy maxima along the minimum energy path connecting 
two stable isomers of a given cluster or reactant and product 
for a chemical reaction, posing fundamental difficulties in 

finding such structures. For their fleeting nature, transition 
structures are impossible to be isolated experimentally. 
Therefore, optimizing such structures computationally is 
unavoidable [1].  

Evolutionary algorithm or EA is a population-based 
stochastic method, where a population of individuals 
probabilistically roams the problem’s search space. By 
analogy of natural evolution of species, individuals evolve 
through various genetic operators to better solutions.  These 
operators combine and mix the genetic information of the 
parents to generate offspring. The goal is to create offspring 
which are fitter than the parents. The fitness of an individual 
is often defined numerically or otherwise. The process 
continues for a number of generations until the specified 
convergence criteria are satisfied.  Evolutionary algorithms 
have been used extensively for optimizing complex systems. 
For instance, a motivating example for us is the 
optimization of optimal chemical structures [9-16]. 

EA possesses many advantages in finding transition 
states over other classical deterministic numerical methods. 
Firstly, EA is well established for its efficiency in sampling 
search space to locate the global optimum. Secondly, it does 
not require any prior knowledge about the landscape. In 
contrast to classical numerical methods where derivatives 
information is mandatory, only the fitness of a given 
potential input vector is necessary to guide evolution search. 
Thirdly, a well-known strength of EAs is their ability to 
partition the population of individuals among multiple 
computing nodes. Doing so allows sublinear speedups in 
computation and even super-linear speedups [12, 16]. 
Further, unlike classical numerical methods which converge 
to first order saddle points or transition structures only if the 
initial guesses were very close to the saddle points - which 
are unlikely in most cases due to the effect of curse of 
dimensionality. EA, on the other hand, can converge to 
saddle points even if started far apart from the solutions. 
However, the canonical and typical EAs are designed to bias 
toward single solution. To locate multiple optimal solutions 
in multi-modal problems using EA, diversity-assuring and 
multiple-solution maintaining schemes have been 
introduced [2]. 



In this paper, we introduce a new fitness function that 
favors 1st order saddle points or transition states. We also 
present a valley adaptive clearing multi-modal genetic 
algorithm for finding multiple 1st order saddle points. The 
essential backbone of our algorithm is a valley adaptive 
clearing scheme [2] for multi-modal optimization. In the 
algorithm, the initial population of individuals is sampled to 
sit in unique valley or basin of attraction. The reproduction 
operators are employed on the population individuals, 
leading to offspring. Yielding offspring sharing a common 
valley are subsequently grouped together and categorized 
into elites and inferiors according to their fitness. Elites are 
enforced to survive to the next generation, while the 
inferiors are relocated to unexplored area of the search 
space. The next evolutionary iteration proceeds until the 
maximum number of generations is exceeded, or pre-
specified stopping criteria are satisfied.  

The paper is organized as follows: Section ΙΙ provides a 
brief definition of the non-linear programming problem. 
Related work is presented in Section ΙΙΙ. The details of the 
proposed method are presented in section ΙV while section 
V reports the results obtained from our computational study. 
A brief conclusion and future work are then stated in 
Section VI. 

II. PROBLEM STATEMENT 

A transition state or a 1st saddle point is a stationary 
point with a vanished gradient and one and only one 
negative eigenvalue in the hessian matrix [7]. These points 
can be mathematically expressed as: 

܂܆ ൌ ቄܑܠ| ቀб௙ሺܑܠሻ
б୶౟

ൌ 0ቁ &  ሺ݁௜௞ ൏ 0ሻ ቅ  (1) 

Where ܑܠ א ሻܑܠis the dimensional size, ݂ሺ ݀ ,ࢊ܀ א   is  ܂܆  ,܀
the set that includes all possible 1st order saddle points, and 
݁௜௞ is the only negative eigenvalue of the hessian matrix ۶ܑ, 
respectively. ‘&’ denotes a logical AND operator. 

III. RELATED WORK 
In the last decades, many methods have been proposed 

to tackle the problem of finding first order saddle points or 
transition states. These methods can be classified into two 
categories: deterministic and stochastic methods.  

Deterministic methods are the ones in which the 
gradient and/or hessian information is used to find the 1st 
order saddle points. These methods can be further classified 
into doubly-ended and single-ended methods [17-21]. In 
doubly-ended methods, two minima are required in order to 
find saddle points in between. The accuracy of the saddle 
points remains unresolved on most of doubly ended 
methods. The main advantage of such methods is the ability 
to converge quickly to the area near first order saddle points. 
However, it hardly converges to first order saddle points 
precisely. In contrast to doubly-ended methods, single-
ended methods require no information about the location of 

the transition [20, 21]. However, it requires a good initial 
guess to find 1st saddle points.  

In stochastic search methods, instead of utilizing only 
one or two solution(s) to find saddle points, a population of 
individuals is used instead to explore the search space for 
saddle points [1]. To date, there have been few stochastic 
methods proposed for finding first order saddle point, 
making it a fertile area for further research investigation. 
Chaudhury et al. suggested a simulated annealing method to 
locate saddle points [22]. Bungay et al. [1] also suggested a 
GA method that utilized the number of negative eigenvalue 
to bias the evolutionary search towards 1st order saddle 
points. Both previously mentioned methods utilized second 
derivative information (hessian matrix). Chaudhury et al. 
[23] also described a GA that estimates the eigen values 
from the gradient information, with the assumption that 
these points lie on the minimum energy path. For such 
assumption to hold, the GA must start its search from the 
global minimum configuration [23]. In addition, its 
trajectory search nature limits parallelism of GA.  

IV. VALLEY ADAPTIVE CLEARING GENETIC ALGORITHM 
FOR FINDING MUTLIPLE SADDLE POINTS 

Here, a real-coded valley-adaptive clearing genetic 
algorithm is proposed to locate multiple saddle points. In 
this algorithm, the population of individuals is initiated with 
each individual falling in a different basin of attraction, 
using a hill-valley detection scheme1. Each individual ܠ is 
evaluated using Eqn. (2) 

݂ሺܠሻ ൌ ൝
ିଵ

൫ห|܏|หାఋ൯೏ ݂݅ ݊ ൌ 1 

݈ ݂݅ ݊ ് 1
              (2) 

where || ܏ || is the L2-norm of the gradient vector; ݊ is the 
number of negative eigen values, ߡ is a real number greater 
zero, and ߜ  denotes a small numerical value to avoid any 
division by zero error. ݈ is a small positive number. 

Individuals then undergo selection, mutation and 
crossover. Thereafter, the yielding offspring undergoes the 
valley adaptive clearing scheme [2] which involves the 
identification, clearing and valley replacement phases. 

A. Hill-Valley Detection  

The hill-valley detection procedure [24] begins by 
generating a line connecting two given points in the 
Euclidean space. Subsequently, a number of intermediate 
points are sampled within the line. The fitness values of 
these points are then calculated.  A valley existence, on one 
hand, is identified, if the fitness of any sampled points 
represents an improvement over that of the given points. 
Otherwise, a hill is established.  

                                                           
1 A minimization of the fitness function Eqn. (2) is assumed. 



B. Valley-Adaptive Clearing Scheme 
The valley-adaptive clearing scheme is proposed to 

adapt to non-uniform width of valleys in the fitness 
landscape. The main idea of the valley-adaptive clearing 
scheme is to group the population individuals into niches 
based on whether they share a common valley or not. 
Subsequently, the lowest fit individuals of a common valley, 
i.e., from the same niche, are relocated to unexplored area of 
the landscape [2]. 

The valley-adaptive clearing scheme is composed of 
three core phases. The valley identification phase 
categorizes the population of individuals into groups of 
individuals sharing the same valley, denoted as Vgroups. 
Subsequently, the dominant individual (i.e., in terms of 
fitness value) of a valley group or Vid is archived if it 
represents a unique first order saddle solution, while all 
other members of the same group undergo the valley 
replacement phase where relocation of these individuals to 
new basins of attractions or valleys are made so that first 
order saddle solution elsewhere may be uncovered. In the 
event that no first order saddle solution exists in a valley 
group, all individuals of the group will undergo the valley 
clearing stage where elite individuals are ensured to survive 
across the search generation while all others are relocated to 
new basin of the attractions. 

1) Valley Identification Phase 
The procedure of valley identification begins with the 

sorting of population individuals in ascending order 
according to fitness. Individuals are then grouped together if 
they share a common valley. Individuals belonging to the 
same valley group are then categorized according to their 
fitness into elites and inferiors. Elites are the fittest k 
individuals in a group, while the remaining individuals are 
the inferiors. 

2) Valley Clearing Phase 
Valley clearing is a process in which less fit individuals 

(or inferiors) are relocated out of the same basin of 
attraction, leaving valleys to be further exploited by the 
fittest individuals (elites). In the valley clearing process, 
each inferior member (x) of the valley group (Vid) is 
relocated randomly in the range of  Qୡ୪ୣୟ୰, i.e., the clearing 
niche radius, to 3 * Qୡ୪ୣୟ୰ , whereas other individuals (or 
elites) are left unchanged for the purpose of exploiting the 
basin of attraction.  

3) Valley Replacement Phase 
The motivation behind valley replacement process is to 

reduce any computational resources wasted on 
rediscovering of valleys where the 1st order saddle point 
solutions have already been uncovered.  Individuals of the 
populations falling in previously encountered valleys are 
replaced with individuals in new basins of attractions, so as 

to bias the search towards previously unexplored region of 
the landscape. 

C. Archiving Procedure 
All first order saddle point solutions found throughout 

the search are archived using an indexed database. Two data 
structures, the first is the array(s) or list(s) of discovered 
solutions, while the second is a hierarchical index or tree. Its 
nodes represent all cluster centers of the solutions found 
throughout the search, organized in a hierarchical manner 
according to the spatial order between solutions. The lists of 
solutions lie at the leave nodes of the index tree. 

To keep the archive free of duplicates, we proposed a 
hybrid archiving procedure that combines a distance metric 
with hill-valley detection procedure to detect duplicates in 
the archive. In this procedure, the hill-valley detection 
procedure is employed only on selected archived saddle 
points that fall within a predefined distance of a saddle 
point. 

V. EMPIRICAL STUDY 
In this section, we begin first with a study on the 

efficacy of the valley adaptive clearing genetic algorithm 
(AVAC), taking Bungay’s GA (BGA), other archiving 
clearing GAs (AC – Archiving clearing GA, AMC – 
archiving modified clearing GA) [2] and the stochastic 
multi-start Dimer local search (SMLS) (a classical method 
for finding transition) [20] as the baseline for comparison, 
using several multi-modal benchmark test problems. The 
test problems considered in the study and computational 
results obtained are presented in Sections A and B, 
respectively. The landscape of all problems considered in 
the present study contains significant number of critical 
points including maxima, minima and saddle points. 

A. Benchmark Test Problems 

Problem 1. The 2D Rastrigin Function Test Case     

The 2D Rastrigin function Eqn. (3) is a typical multi-modal 
benchmark test problem used in evolutionary computation 
research. For the range of [-5,5], the landscape contains 
approximately 223 1st order saddle points2.  

݂ሺݔ, ሻݕ ൌ 20 ൅ ଶݔ ൅ ଶݕ െ 10ሺܿݏ݋ ߨ2 ݔ ൅ ݏ݋ܿ ߨ2  ሻ      (3)ݕ

Problem 2. 2D Multi-function test Case     

The 2D Multi-function Eqn. (4) is a challenging test 
case for saddle point algorithms. It has approximately 144 
saddle points2 within the range of [-2, 2].   

݂ሺݔ, ሻݕ ൌ െ1 െ ݔ sinሺ4ݔ ߨሻ ൅ ݕ  sinሺ4 ݕ ߨ ൅                  ሻ        (4)ߨ

Problem 3. The Sines Function Test Case     

                                                           
2 The number of 1st order saddle points is approximated by a mean 

of visualization. 



The 2D Sines function Eqn. (5) is multi-modal test function 
with approximately 84 1st order saddle points2 within the 
range of [-10, 10 ].   

݂ሺݔ, ሻݕ ൌ 1 ൅ ሻݔଶሺ݊݅ݏ ൅ ሻݕଶሺ݊݅ݏ െ 0.1݁ି௫మି௬మ        (5) 

Problem 4. The Three-Atom Lennard–Jones cluster  

One of the important molecular systems is the Lennard 
Jones clusters. Lennard Jones potential describes the 
interaction between atoms in molecular dynamics:  

݂ሺܠሻ ൌ ∑ ∑ ߝ ቈ൬ ௥బ
௥೔ೕ

൰
ଵଶ

െ 2 ൬ ௥బ
௥೔ೕ

൰
଺

቉ே
௝ୀ௜ାଵ

ேିଵ
௜ୀଵ            (6) 

where ܠ  represents the vector of atomic configurations, 
while ݎ ,ߝ଴ and N denoting the depth of the potential well, 
(finite) distance at which the interparticle potential is zero 
and atom size, are configured as 1, 1 and 3, respectively.  
Finally, ݎ௜௝ denotes the Euclidean distance between atoms i 
and j. 

B. Numerical Results 
In this section, the computational settings and results 

are reported. All methods used here to benchmark against 
and the proposed method are implemented in MATLAB 
development environment and investigation executed on a 
PC with 2.66 GHz Intel Duo Core CPU and 3 GB RAM. 
The following algorithmic configurations are also 
considered: uniform mutation probability of 20%; scatter 
crossover probability of 60%, 20% of the population 
represents the elites and stochastic uniform sampling based 
selection.  The number of sample points (m) in the hill-
valley detection, the number of elites (k), the archiving-
distance threshold (τ) and the clearing niche radius (Qclear) 
are configured at 5, 2, 0.5 and 0.25, respectively.  A 
population size of 100 is considered for all benchmark 
problems, and the search terminates at a maximum 
generations of 100.  

Performance of different GAs is compared in terms of 
the number of optima and the execution time. The fitness of 
the individuals is evaluated based on Eqn. (2). The 
numerical results are summarized in Figures 1-2. 

In Figure 1, percentages of 1st order saddle points 
uncovered by different archiving clearing GAs and Bungay 
GA are presented. The plotted results show that the 
archiving clearing GAs maintains the highest percentages of 
uncovered 1st order saddle points on each of the different 
benchmark problems. The percentages of saddle points 
discovered by the archiving clearing GAs vary in the range 
of 10-100%, whereas those uncovered by BGA and SMSL 
vary in the range of 1-8%.  

Among the clearing methods, the valley adaptive 
clearing GA or AVAC maintained the highest percentage of 
1st order saddle points, varying in the ranges of 94-100%. 
On the other hand, those uncovered by the other clearing 
compeers vary largely in the range of 25-55%, respectively.   

 
Figure 1.  Percentages of uncovered 1st order saddle points by different 

GAs, on the three benchmark problems. 

 
Figure 2.  Execution time of different methods, on the three benchmark 

problems. 

Figure 2 shows the execution time of different GAs on 
three benchmark problems.  The clearing GAs execution 
time tends to be reasonably higher than BGA.  However, in 
complex optimization where function evaluations are 
computationally expensive [14], the archiving overhead may 
be regarded as negligible. 

We have also employed the algorithms on the realistic 
three-atom Lennard-Jones cluster problem. The proposed 
valley adaptive clearing genetic algorithm (AVAC) 
uncovered the highest average of 355.5 first order saddle 
points, whereas the other methods, namely, AC, AMC, 
BGA, and SMLS uncovered averages of 35.5, 168.2, 3.9, 
and 45.4, respectively. The average execution times of the 
algorithms were 91.652, 31.594, 58.649, 13.251 and 34.089 
seconds for AVAC, AC, AMC, BGA, and SMLS, 
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respectively. Although the execution time of AVAC is 
reasonably longer than the others, the number of transition 
states uncovered by AVAC per second, which is 3.87, is the 
highest among all algorithms.   

Next, we also study the efficacy of our fitness function 
proposed in Eqn. (2) against that in Eqn. (7), introduced 
previously in [1].  

݂ሺܠሻ ൌ ∑ ∑ ߝ ቈ൬ ௥బ
௥೔ೕ

൰
ଵଶ

െ 2 ൬ ௥బ
௥೔ೕ

൰
଺

቉ே
௝ୀ௜ାଵ

ேିଵ
௜ୀଵ           (7) 

Maintaining the same computational setting for AVAC, the 
percentages of true and false 1st saddle points uncovered and 

execution time are reported in Table 1. Note that the false 1st 
order saddle points donate non 1st order saddle points, 
critical points.  

The results, summarized in Table 1, show that the 
fitness function proposed in Eqn. (2) maintained the highest 
percentages of true 1st order saddle points and 0% false 1st 
order saddle points, while the fitness function proposed in 
[1] Eqn. (7) lead to 36-39% false saddle points. Extra 
computation is, thus, unnecessary incurred to distinguish 
between true and false saddle points. Hence, the proposed 
fitness function lead to a ~1.45 factor of improvements in 
the execution time over that proposed in [1]. 

TABLE 1. FITNESS FUNCTIONS PERFORMANCE COMPARISON, ON THE THREE BENCHMARK PROBLEMS. 

Benchmark 
Problem Fitness functions Total uncovered 

Solutions (%) 
True Saddle 
Points (%) 

False Saddle 
Points (%) 

Execution 
Time 

(Seconds) 

Multi-Function Proposed Eqn. (2) 94% 94% 0 52.094 
Eqn. (7) [1] 125% 87% 38% 75.890 

Rastrigin Proposed Eqn. (2) 96% 96% 0 65.251 
Eqn. (7)   [1] 133% 94% 39% 102.351 

Sines Proposed Eqn. (2) 100% 100% 0 56.775 
Eqn. (7) [1] 136% 100% 36% 81.13 

 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a novel genetic 

algorithm for finding multiple first order saddle points. The 
algorithm includes a new fitness function, and valley 
adaptive clearing scheme which involves hill-valley 
initialization, valley-adaptive clearing and archiving.  The 
experimental results showed that the archiving clearing GAs 
located much more 1st order saddle points than previously 
proposed genetic and classic algorithms. 

Among the proposed archiving clearing GAs, numerical 
results showed that the proposed valley-adaptive clearing 
GA maintained the highest percentages of uncovered 1st 
order saddle points on all benchmark problems. 

We have also introduced a new formulation of fitness 
function for locating 1st order saddle points. Investigation 
against the fitness function used in [1] highlighted the 
efficacy of the new fitness function in converging to true 1st 
order saddle points. 

For future work, the authors are going to study more 
complex Lennard Jones clusters using a memetic algorithm 
version of the proposed method.  As memetic algorithms 
combine the evolutionary algorithm with individual learning 
procedures capable of performing local refinements, they 
efficiently explore and exploit the search landscape much 
better than GA. They have also been successfully applied to 
many complex optimization problems across a wide variety 
of application domains [11-14] including water cluster 
optimization [25]. 
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